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I. Introduction and Overview
Multiple regression analysis is a statistical tool used to understand the relationship 
between or among two or more variables.1 Multiple regression involves a variable 
to be explained—called the dependent variable—and additional explanatory vari-
ables that are thought to produce or be associated with changes in the dependent 
variable.2 For example, a multiple regression analysis might estimate the effect of 
the number of years of work on salary. Salary would be the dependent variable to 
be explained; the years of experience would be the explanatory variable.

Multiple regression analysis is sometimes well suited to the analysis of data 
about competing theories for which there are several possible explanations for the 
relationships among a number of explanatory variables.3 Multiple regression typi-
cally uses a single dependent variable and several explanatory variables to assess the 
statistical data pertinent to these theories. In a case alleging sex discrimination in 
salaries, for example, a multiple regression analysis would examine not only sex, 
but also other explanatory variables of interest, such as education and experience.4 
The employer-defendant might use multiple regression to argue that salary is a 
function of the employee’s education and experience, and the employee-plaintiff 
might argue that salary is also a function of the individual’s sex. Alternatively, 
in an antitrust cartel damages case, the plaintiff’s expert might utilize multiple 
regression to evaluate the extent to which the price of a product increased dur-
ing the period in which the cartel was effective, after accounting for costs and 
other variables unrelated to the cartel. The defendant’s expert might use multiple 

1.  A variable is anything that can take on two or more values (e.g., the daily temperature in 
Chicago or the salaries of workers at a factory).

2.  Explanatory variables in the context of a statistical study are sometimes called independent 
variables. See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section II.A.1, 
in this manual. The guide also offers a brief discussion of multiple regression analysis. Id., Section V.

3.  Multiple regression is one type of statistical analysis involving several variables. Other types 
include matching analysis, stratification, analysis of variance, probit analysis, logit analysis, discriminant 
analysis, and factor analysis.

4.  Thus, in Ottaviani v. State University of New York, 875 F.2d 365, 367 (2d Cir. 1989) (citations 
omitted), cert. denied, 493 U.S. 1021 (1990), the court stated:

In disparate treatment cases involving claims of gender discrimination, plaintiffs typically use multiple 
regression analysis to isolate the influence of gender on employment decisions relating to a particular 
job or job benefit, such as salary.

The first step in such a regression analysis is to specify all of the possible “legitimate” (i.e., non-
discriminatory) factors that are likely to significantly affect the dependent variable and which could 
account for disparities in the treatment of male and female employees. By identifying those legitimate 
criteria that affect the decisionmaking process, individual plaintiffs can make predictions about what job 
or job benefits similarly situated employees should ideally receive, and then can measure the difference 
between the predicted treatment and the actual treatment of those employees. If there is a disparity 
between the predicted and actual outcomes for female employees, plaintiffs in a disparate treatment 
case can argue that the net “residual” difference represents the unlawful effect of discriminatory animus 
on the allocation of jobs or job benefits.
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regression to suggest that the plaintiff’s expert had omitted a number of price-
determining variables.

More generally, multiple regression may be useful (1) in determining whether 
a particular effect is present; (2) in measuring the magnitude of a particular effect; 
and (3) in forecasting what a particular effect would be, but for an intervening 
event. In a patent infringement case, for example, a multiple regression analysis 
could be used to determine (1) whether the behavior of the alleged infringer 
affected the price of the patented product, (2) the size of the effect, and (3) what 
the price of the product would have been had the alleged infringement not 
occurred.

Over the past several decades, the use of multiple regression analysis in court 
has grown widely. Regression analysis has been used most frequently in cases of 
sex and race discrimination5 antitrust violations,6 and cases involving class cer-

5.  Discrimination cases using multiple regression analysis are legion. See, e.g., Bazemore v. 
Friday, 478 U.S. 385 (1986), on remand, 848 F.2d 476 (4th Cir. 1988); Csicseri v. Bowsher, 862 F. 
Supp. 547 (D.D.C. 1994) (age discrimination), aff’d, 67 F.3d 972 (D.C. Cir. 1995); EEOC v. General 
Tel. Co., 885 F.2d 575 (9th Cir. 1989), cert. denied, 498 U.S. 950 (1990); Bridgeport Guardians, Inc. 
v. City of Bridgeport, 735 F. Supp. 1126 (D. Conn. 1990), aff’d, 933 F.2d 1140 (2d Cir.), cert. denied, 
502 U.S. 924 (1991); Bickerstaff v. Vassar College, 196 F.3d 435, 448–49 (2d Cir. 1999) (sex dis-
crimination); McReynolds v. Sodexho Marriott, 349 F. Supp. 2d 1 (D.C. Cir. 2004) (race discrimina-
tion); Hnot v. Willis Group Holdings Ltd., 228 F.R.D. 476 (S.D.N.Y. 2005) (gender discrimination); 
Carpenter v. Boeing Co., 456 F.3d 1183 (10th Cir. 2006) (sex discrimination); Coward v. ADT 
Security Systems, Inc., 140 F.3d 271, 274–75 (D.C. Cir. 1998); Smith v. Virginia Commonwealth 
Univ., 84 F.3d 672 (4th Cir. 1996) (en banc); Hemmings v. Tidyman’s Inc., 285 F.3d 1174, 1184–86 
(9th Cir. 2000); Mehus v. Emporia State University, 222 F.R.D. 455 (D. Kan. 2004) (sex discrimina-
tion); Guiterrez v. Johnson & Johnson, 2006 WL 3246605 (D.N.J. Nov. 6, 2006 (race discrimination); 
Morgan v. United Parcel Service, 380 F.3d 459 (8th Cir. 2004) (racial discrimination). See also Keith 
N. Hylton & Vincent D. Rougeau, Lending Discrimination: Economic Theory, Econometric Evidence, and 
the Community Reinvestment Act, 85 Geo. L.J. 237, 238 (1996) (“regression analysis is probably the best 
empirical tool for uncovering discrimination”).

6.  E.g., United States v. Brown Univ., 805 F. Supp. 288 (E.D. Pa. 1992) (price fixing of college 
scholarships), rev’d, 5 F.3d 658 (3d Cir. 1993); Petruzzi’s IGA Supermarkets, Inc. v. Darling-Delaware 
Co., 998 F.2d 1224 (3d Cir.), cert. denied, 510 U.S. 994 (1993); Ohio v. Louis Trauth Dairy, Inc., 
925 F. Supp. 1247 (S.D. Ohio 1996); In re Chicken Antitrust Litig., 560 F. Supp. 963, 993 (N.D. Ga. 
1980); New York v. Kraft Gen. Foods, Inc., 926 F. Supp. 321 (S.D.N.Y. 1995); Freeland v. AT&T, 
238 F.R.D. 130 (S.D.N.Y. 2006); In re Pressure Sensitive Labelstock Antitrust Litig., 2007 U.S. Dist. 
LEXIS 85466 (M.D. Pa. Nov. 19, 2007); In re Linerboard Antitrust Litig., 497 F. Supp. 2d 666 (E.D. 
Pa. 2007) (price fixing by manufacturers of corrugated boards and boxes); In re Polypropylene Carpet 
Antitrust Litig., 93 F. Supp. 2d 1348 (N.D. Ga. 2000); In re OSB Antitrust Litig., 2007 WL 2253418 
(E.D. Pa. Aug. 3, 2007) (price fixing of Oriented Strand Board, also known as “waferboard”); In re 
TFT-LCD (Flat Panel) Antitrust Litig., 267 F.R.D. 583 (N.D. Cal. 2010).

For a broad overview of the use of regression methods in antitrust, see ABA Antitrust Section, 
Econometrics: Legal, Practical and Technical Issues (John Harkrider & Daniel Rubinfeld, eds. 2005). 
See also Jerry Hausman et al., Competitive Analysis with Differenciated Products, 34 Annales D’Économie 
et de Statistique 159 (1994); Gregory J. Werden, Simulating the Effects of Differentiated Products Mergers: 
A Practical Alternative to Structural Merger Policy, 5 Geo. Mason L. Rev. 363 (1997).
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tification (under Rule 23).7 However, there are a range of other applications, 
including census undercounts,8 voting rights,9 the study of the deterrent effect of 
the death penalty,10 rate regulation,11 and intellectual property.12 

7.  In antitrust, the circuits are currently split as to the extent to which plaintiffs must prove 
that common elements predominate over individual elements. E.g., compare In Re Hydrogen Peroxide 
Litig., 522 F.2d 305 (3d Cir. 2008) with In Re Cardizem CD Antitrust Litig., 391 F.3d 812 (6th Cir. 
2004). For a discussion of use of multiple regression in evaluating class certification, see Bret M. Dickey 
& Daniel L. Rubinfeld, Antitrust Class Certification: Towards an Economic Framework, 66 N.Y.U. Ann. 
Surv. Am. L. 459 (2010) and John H. Johnson & Gregory K. Leonard, Economics and the Rigorous 
Analysis of Class Certification in Antitrust Cases, 3 J. Competition L. & Econ. 341 (2007).

8.  See, e.g., City of New York v. U.S. Dep’t of Commerce, 822 F. Supp. 906 (E.D.N.Y. 1993) 
(decision of Secretary of Commerce not to adjust the 1990 census was not arbitrary and capricious), 
vacated, 34 F.3d 1114 (2d Cir. 1994) (applying heightened scrutiny), rev’d sub nom. Wisconsin v. City of 
New York, 517 U.S. 565 (1996); Carey v. Klutznick, 508 F. Supp. 420, 432–33 (S.D.N.Y. 1980) (use 
of reasonable and scientifically valid statistical survey or sampling procedures to adjust census figures 
for the differential undercount is constitutionally permissible), stay granted, 449 U.S. 1068 (1980), rev’d 
on other grounds, 653 F.2d 732 (2d Cir. 1981), cert. denied, 455 U.S. 999 (1982); Young v. Klutznick, 
497 F. Supp. 1318, 1331 (E.D. Mich. 1980), rev’d on other grounds, 652 F.2d 617 (6th Cir. 1981), cert. 
denied, 455 U.S. 939 (1982).

9.  Multiple regression analysis was used in suits charging that at-large areawide voting was 
instituted to neutralize black voting strength, in violation of section 2 of the Voting Rights Act, 42 
U.S.C. § 1973 (1988). Multiple regression demonstrated that the race of the candidates and that of 
the electorate were determinants of voting. See Williams v. Brown, 446 U.S. 236 (1980); Rodriguez 
v. Pataki, 308 F. Supp. 2d 346, 414 (S.D.N.Y. 2004); United States v. Vill. of Port Chester, 2008 
U.S. Dist. LEXIS 4914 (S.D.N.Y. Jan. 17, 2008); Meza v. Galvin, 322 F. Supp. 2d 52 (D. Mass. 
2004) (violation of VRA with regard to Hispanic voters in Boston); Bone Shirt v. Hazeltine, 336 
F. Supp. 2d 976 (D.S.D. 2004) (violations of VRA with regard to Native American voters in South 
Dakota); Georgia v. Ashcroft, 195 F. Supp. 2d 25 (D.D.C. 2002) (redistricting of Georgia’s state and 
federal legislative districts); Benavidez v. City of Irving, 638 F. Supp. 2d 709 (N.D. Tex. 2009) (chal-
lenge of city’s at-large voting scheme). For commentary on statistical issues in voting rights cases, see, 
e.g., Statistical and Demographic Issues Underlying Voting Rights Cases, 15 Evaluation Rev. 659 (1991); 
Stephen P. Klein et al., Ecological Regression Versus the Secret Ballot, 31 Jurimetrics J. 393 (1991); James 
W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote Dilution Litigation, 21 
Urb. Law. 589 (1989); Arthur Lupia & Kenneth McCue, Why the 1980s Measures of Racially Polarized 
Voting Are Inadequate for the 1990s, 12 Law & Pol’y 353 (1990).

10.  See, e.g., Gregg v. Georgia, 428 U.S. 153, 184–86 (1976). For critiques of the validity of 
the deterrence analysis, see National Research Council, Deterrence and Incapacitation: Estimating 
the Effects of Criminal Sanctions on Crime Rates (Alfred Blumstein et al. eds., 1978); Richard O. 
Lempert, Desert and Deterrence: An Assessment of the Moral Bases of the Case for Capital Punishment, 79 
Mich. L. Rev. 1177 (1981); Hans Zeisel, The Deterrent Effect of the Death Penalty: Facts v. Faith, 1976 
Sup. Ct. Rev. 317; and John Donohue & Justin Wolfers, Uses and Abuses of Statistical Evidence in the 
Death Penalty Debate, 58 Stan. L. Rev. 787 (2005).

11.  See, e.g., Time Warner Entertainment Co. v. FCC, 56 F.3d 151 (D.C. Cir. 1995) (chal-
lenge to FCC’s application of multiple regression analysis to set cable rates), cert. denied, 516 U.S. 
1112 (1996); Appalachian Power Co. v. EPA, 135 F.3d 791 (D.C. Cir. 1998) (challenging the EPA’s 
application of regression analysis to set nitrous oxide emission limits); Consumers Util. Rate Advocacy 
Div. v. Ark. PSC, 99 Ark. App. 228 (Ark. Ct. App. 2007) (challenging an increase in nongas rates).

12.  See Polaroid Corp. v. Eastman Kodak Co., No. 76-1634-MA, 1990 WL 324105, at *29, 
*62–63 (D. Mass. Oct. 12, 1990) (damages awarded because of patent infringement), amended by No. 
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Multiple regression analysis can be a source of valuable scientific testimony 
in litigation. However, when inappropriately used, regression analysis can confuse 
important issues while having little, if any, probative value. In EEOC v. Sears, 
Roebuck & Co.,13 in which Sears was charged with discrimination against women 
in hiring practices, the Seventh Circuit acknowledged that “[m]ultiple regression 
analyses, designed to determine the effect of several independent variables on a 
dependent variable, which in this case is hiring, are an accepted and common 
method of proving disparate treatment claims.”14 However, the court affirmed 
the district court’s findings that the “E.E.O.C.’s regression analyses did not ‘accu-
rately reflect Sears’ complex, nondiscriminatory decision-making processes’” and 
that the “‘E.E.O.C.’s statistical analyses [were] so flawed that they lack[ed] any 
persuasive value.’”15 Serious questions also have been raised about the use of mul-
tiple regression analysis in census undercount cases and in death penalty cases.16 

The Supreme Court’s rulings in Daubert and Kumho Tire have encouraged 
parties to raise questions about the admissibility of multiple regression analyses.17 
Because multiple regression is a well-accepted scientific methodology, courts have 
frequently admitted testimony based on multiple regression studies, in some cases 
over the strong objection of one of the parties.18 However, on some occasions 
courts have excluded expert testimony because of a failure to utilize a multiple 
regression methodology.19 On other occasions, courts have rejected regression 

76-1634-MA, 1991 WL 4087 (D. Mass. Jan. 11, 1991); Estate of Vane v. The Fair, Inc., 849 F.2d 
186, 188 (5th Cir. 1988) (lost profits were the result of copyright infringement), cert. denied, 488 U.S. 
1008 (1989); Louis Vuitton Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 576, 664 (S.D.N.Y. 
2007) (trademark infringement and unfair competition suit). The use of multiple regression analysis to 
estimate damages has been contemplated in a wide variety of contexts. See, e.g., David Baldus et al., 
Improving Judicial Oversight of Jury Damages Assessments: A Proposal for the Comparative Additur/Remittitur 
Review of Awards for Nonpecuniary Harms and Punitive Damages, 80 Iowa L. Rev. 1109 (1995); Talcott 
J. Franklin, Calculating Damages for Loss of Parental Nurture Through Multiple Regression Analysis, 52 
Wash. & Lee L. Rev. 271 (1997); Roger D. Blair & Amanda Kay Esquibel, Yardstick Damages in Lost 
Profit Cases: An Econometric Approach, 72 Denv. U. L. Rev. 113 (1994). Daniel Rubinfeld, Quantitative 
Methods in Antitrust, in 1 Issues in Competition Law and Policy 723 (2008).

13.  839 F.2d 302 (7th Cir. 1988).
14.  Id. at 324 n.22.
15.  Id. at 348, 351 (quoting EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1342, 1352 

(N.D. Ill. 1986)). The district court commented specifically on the “severe limits of regression analysis 
in evaluating complex decision-making processes.” 628 F. Supp. at 1350.

16.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Sections II.A.3, 
B.1, in this manual.

17.  Daubert v. Merrill Dow Pharms., Inc. 509 U.S. 579 (1993); Kumho Tire Co. v. Carmichael, 
526 U.S. 137, 147 (1999) (expanding the Daubert’s application to nonscientific expert testimony).

18.  See Newport Ltd. v. Sears, Roebuck & Co., 1995 U.S. Dist. LEXIS 7652 (E.D. La. May 
26, 1995). See also Petruzzi’s IGA Supermarkets, supra note 6, 998 F.2d at 1240, 1247 (finding that 
the district court abused its discretion in excluding multiple regression-based testimony and reversing 
the grant of summary judgment to two defendants).

19.  See, e.g., In re Executive Telecard Ltd. Sec. Litig., 979 F. Supp. 1021 (S.D.N.Y. 1997).



Reference Guide on Multiple Regression

309

studies that did not have an adequate foundation or research design with respect 
to the issues at hand.20 

In interpreting the results of a multiple regression analysis, it is important to 
distinguish between correlation and causality. Two variables are correlated—that 
is, associated with each other—when the events associated with the variables 
occur more frequently together than one would expect by chance. For example, 
if higher salaries are associated with a greater number of years of work experience, 
and lower salaries are associated with fewer years of experience, there is a positive 
correlation between salary and number of years of work experience. However, if 
higher salaries are associated with less experience, and lower salaries are associated 
with more experience, there is a negative correlation between the two variables.

A correlation between two variables does not imply that one event causes the 
second. Therefore, in making causal inferences, it is important to avoid spurious 
correlation.21 Spurious correlation arises when two variables are closely related but 
bear no causal relationship because they are both caused by a third, unexamined 
variable. For example, there might be a negative correlation between the age of 
certain skilled employees of a computer company and their salaries. One should 
not conclude from this correlation that the employer has necessarily discriminated 
against the employees on the basis of their age. A third, unexamined variable, such 
as the level of the employees’ technological skills, could explain differences in pro-
ductivity and, consequently, differences in salary.22 Or, consider a patent infringe-
ment case in which increased sales of an allegedly infringing product are associated 
with a lower price of the patented product.23 This correlation would be spurious 
if the two products have their own noncompetitive market niches and the lower 
price is the result of a decline in the production costs of the patented product.

Pointing to the possibility of a spurious correlation will typically not be 
enough to dispose of a statistical argument. It may be appropriate to give little 
weight to such an argument absent a showing that the correlation is relevant. 
For example, a statistical showing of a relationship between technological skills 

20.  See City of Tuscaloosa v. Harcros Chemicals, Inc., 158 F.2d 548 (11th Cir. 1998), in which 
the court ruled plaintiffs’ regression-based expert testimony inadmissible and granted summary judg-
ment to the defendants. See also American Booksellers Ass’n v. Barnes & Noble, Inc., 135 F. Supp. 
2d 1031, 1041 (N.D. Cal. 2001), in which a model was said to contain “too many assumptions and 
simplifications that are not supported by real-world evidence,” and Obrey v. Johnson, 400 F.3d 691 
(9th Cir. 2005).

21.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section V.B.3, 
in this manual.

22.  See, e.g., Sheehan v. Daily Racing Form Inc., 104 F.3d 940, 942 (7th Cir.) (rejecting plain-
tiff’s age discrimination claim because statistical study showing correlation between age and retention 
ignored the “more than remote possibility that age was correlated with a legitimate job-related quali-
fication”), cert. denied, 521 U.S. 1104 (1997).

23.  In some particular cases, there are statistical tests that allow one to reject claims of causality. 
For a brief description of these tests, which were developed by Jerry Hausman, see Robert S. Pindyck 
& Daniel L. Rubinfeld, Econometric Models and Economic Forecasts § 7.5 (4th ed. 1997). 



Reference Manual on Scientific Evidence

310

and worker productivity might be required in the age discrimination example, 
above.24 

Causality cannot be inferred by data analysis alone; rather, one must infer that 
a causal relationship exists on the basis of an underlying causal theory that explains 
the relationship between the two variables. Even when an appropriate theory has 
been identified, causality can never be inferred directly. One must also look for 
empirical evidence that there is a causal relationship. Conversely, the fact that two 
variables are correlated does not guarantee the existence of a relationship; it could 
be that the model—a characterization of the underlying causal theory—does not 
reflect the correct interplay among the explanatory variables. In fact, the absence 
of correlation does not guarantee that a causal relationship does not exist. Lack of 
correlation could occur if (1) there are insufficient data, (2) the data are measured 
inaccurately, (3) the data do not allow multiple causal relationships to be sorted 
out, or (4) the model is specified wrongly because of the omission of a variable 
or variables that are related to the variable of interest.

There is a tension between any attempt to reach conclusions with near 
certainty and the inherently uncertain nature of multiple regression analysis. In 
general, the statistical analysis associated with multiple regression allows for the 
expression of uncertainty in terms of probabilities. The reality that statistical analy-
sis generates probabilities concerning relationships rather than certainty should not 
be seen in itself as an argument against the use of statistical evidence, or worse, as 
a reason to not admit that there is uncertainty at all. The only alternative might 
be to use less reliable anecdotal evidence.

This reference guide addresses a number of procedural and methodologi-
cal issues that are relevant in considering the admissibility of, and weight to be 
accorded to, the findings of multiple regression analyses. It also suggests some 
standards of reporting and analysis that an expert presenting multiple regression 
analyses might be expected to meet. Section II discusses research design—how the 
multiple regression framework can be used to sort out alternative theories about a 
case. The guide discusses the importance of choosing the appropriate specification 
of the multiple regression model and raises the issue of whether multiple regression 
is appropriate for the case at issue. Section III accepts the regression framework 
and concentrates on the interpretation of the multiple regression results from both 
a statistical and a practical point of view. It emphasizes the distinction between 
regression results that are statistically significant and results that are meaningful 
to the trier of fact. It also points to the importance of evaluating the robustness 

24.  See, e.g., Allen v. Seidman, 881 F.2d 375 (7th Cir. 1989) (judicial skepticism was raised when 
the defendant did not submit a logistic regression incorporating an omitted variable—the possession of 
a higher degree or special education; defendant’s attack on statistical comparisons must also include an 
analysis that demonstrates that comparisons are flawed). The appropriate requirements for the defen-
dant’s showing of spurious correlation could, in general, depend on the discovery process. See, e.g., 
Boykin v. Georgia Pac. Co., 706 F.2d 1384 (1983) (criticism of a plaintiff’s analysis for not including 
omitted factors, when plaintiff considered all information on an application form, was inadequate).
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of regression analyses, i.e., seeing the extent to which the results are sensitive to 
changes in the underlying assumptions of the regression model. Section IV briefly 
discusses the qualifications of experts and suggests a potentially useful role for 
court-appointed neutral experts. Section V emphasizes procedural aspects associ-
ated with use of the data underlying regression analyses. It encourages greater 
pretrial efforts by the parties to attempt to resolve disputes over statistical studies. 

Throughout the main body of this guide, hypothetical examples are used as 
illustrations. Moreover, the basic “mathematics” of multiple regression has been 
kept to a bare minimum. To achieve that goal, the more formal description of the 
multiple regression framework has been placed in the Appendix. The Appendix is 
self-contained and can be read before or after the text. The Appendix also includes 
further details with respect to the examples used in the body of this guide. 

II. Research Design: Model Specification
Multiple regression allows the testifying economist or other expert to choose 
among alternative theories or hypotheses and assists the expert in distinguishing 
correlations between variables that are plainly spurious from those that may reflect 
valid relationships.

A. �What Is the Specific Question That Is Under Investigation 
by the Expert?

Research begins with a clear formulation of a research question. The data to be 
collected and analyzed must relate directly to this question; otherwise, appropri-
ate inferences cannot be drawn from the statistical analysis. For example, if the 
question at issue in a patent infringement case is what price the plaintiff’s product 
would have been but for the sale of the defendant’s infringing product, sufficient 
data must be available to allow the expert to account statistically for the important 
factors that determine the price of the product.

B. �What Model Should Be Used to Evaluate the Question at 
Issue?

Model specification involves several steps, each of which is fundamental to the suc-
cess of the research effort. Ideally, a multiple regression analysis builds on a theory 
that describes the variables to be included in the study. A typical regression model 
will include one or more dependent variables, each of which is believed to be caus-
ally related to a series of explanatory variables. Because we cannot be certain that 
the explanatory variables are themselves unaffected or independent of the influence 
of the dependent variable (at least at the point of initial study), the explanatory 
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variables are often termed covariates. Covariates are known to have an association 
with the dependent or outcome variable, but causality remains an open question.

For example, the theory of labor markets might lead one to expect salaries in 
an industry to be related to workers’ experience and the productivity of workers’ 
jobs. A belief that there is job discrimination would lead one to create a model 
in which the dependent variable was a measure of workers’ salaries and the list of 
covariates included a variable reflecting discrimination in addition to measures 
of job training and experience.

In a perfect world, the analysis of the job discrimination (or any other) issue 
might be accomplished through a controlled “natural experiment,” in which 
employees would be randomly assigned to a variety of employers in an industry 
under study and asked to fill positions requiring identical experience and skills. In 
this observational study, where the only difference in salaries could be a result of 
discrimination, it would be possible to draw clear and direct inferences from an 
analysis of salary data. Unfortunately, the opportunity to conduct observational 
studies of this kind is rarely available to experts in the context of legal proceedings. 
In the real world, experts must do their best to interpret the results of real-world 
“quasi-experiments,” in which it is impossible to control all factors that might affect 
worker salaries or other variables of interest.25

Models are often characterized in terms of parameters—numerical character-
istics of the model. In the labor market discrimination example, one parameter 
might reflect the increase in salary associated with each additional year of prior 
job experience. Another parameter might reflect the reduction in salary associated 
with a lack of current on-the-job experience. Multiple regression uses a sample, 
or a selection of data, from the population (all the units of interest) to obtain esti-
mates of the values of the parameters of the model. An estimate associated with a 
particular explanatory variable is an estimated regression coefficient.

Failure to develop the proper theory, failure to choose the appropriate vari-
ables, or failure to choose the correct form of the model can substantially bias the 
statistical results—that is, create a systematic tendency for an estimate of a model 
parameter to be too high or too low.

1. Choosing the dependent variable

The variable to be explained, the dependent variable, should be the appropriate 
variable for analyzing the question at issue.26 Suppose, for example, that pay dis-

25.  In the literature on natural and quasi-experiments, the explanatory variables are characterized 
as “treatments” and the dependent variable as the “outcome.” For a review of natural experiments 
in the criminal justice arena, see David P. Farrington, A Short History of Randomized Experiments in 
Criminology, 27 Evaluation Rev. 218–27 (2003).

26.  In multiple regression analysis, the dependent variable is usually a continuous variable that 
takes on a range of numerical values. When the dependent variable is categorical, taking on only two 
or three values, modified forms of multiple regression, such as probit analysis or logit analysis, are 
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crimination among hourly workers is a concern. One choice for the dependent 
variable is the hourly wage rate of the employees; another choice is the annual 
salary. The distinction is important, because annual salary differences may in part 
result from differences in hours worked. If the number of hours worked is the 
product of worker preferences and not discrimination, the hourly wage is a good 
choice. If the number of hours worked is related to the alleged discrimination, 
annual salary is the more appropriate dependent variable to choose.27

2. �Choosing the explanatory variable that is relevant to the question at issue

The explanatory variable that allows the evaluation of alternative hypotheses must 
be chosen appropriately. Thus, in a discrimination case, the variable of interest 
may be the race or sex of the individual. In an antitrust case, it may be a variable 
that takes on the value 1 to reflect the presence of the alleged anticompetitive 
behavior and the value 0 otherwise.28

3. Choosing the additional explanatory variables

An attempt should be made to identify additional known or hypothesized explana-
tory variables, some of which are measurable and may support alternative substan-
tive hypotheses that can be accounted for by the regression analysis. Thus, in a 
discrimination case, a measure of the skills of the workers may provide an alterna-
tive explanation—lower salaries may have been the result of inadequate skills.29

appropriate. For an example of the use of the latter, see EEOC v. Sears, Roebuck & Co., 839 F.2d 302, 
325 (7th Cir. 1988) (EEOC used logit analysis to measure the impact of variables, such as age, educa-
tion, job-type experience, and product-line experience, on the female percentage of commission hires).

27.  In job systems in which annual salaries are tied to grade or step levels, the annual salary cor-
responding to the job position could be more appropriate.

28.  Explanatory variables may vary by type, which will affect the interpretation of the regression 
results. Thus, some variables may be continuous and others may be categorical.

29.  In James v. Stockham Valves, 559 F. 2d 310 (5th Cir. 1977), the Court of Appeals rejected 
the employer’s claim that skill level rather than race determined assignment and wage levels, noting 
the circularity of defendant’s argument. In Ottaviani v. State University of New York, 679 F. Supp. 288, 
306–08 (S.D.N.Y. 1988), aff’d, 875 F.2d 365 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the 
court ruled (in the liability phase of the trial) that the university showed that there was no discrimi-
nation in either placement into initial rank or promotions between ranks, and so rank was a proper 
variable in multiple regression analysis to determine whether women faculty members were treated 
differently than men.

However, in Trout v. Garrett, 780 F. Supp. 1396, 1414 (D.D.C. 1991), the court ruled (in the 
damage phase of the trial) that the extent of civilian employees’ prehire work experience was not 
an appropriate variable in a regression analysis to compute back pay in employment discrimination. 
According to the court, including the prehire level would have resulted in a finding of no sex discrimi-
nation, despite a contrary conclusion in the liability phase of the action. Id. See also Stuart v. Roache, 
951 F.2d 446 (1st Cir. 1991) (allowing only 3 years of seniority to be considered as the result of prior 
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Not all possible variables that might influence the dependent variable can be 
included if the analysis is to be successful; some cannot be measured, and others 
may make little difference.30 If a preliminary analysis shows the unexplained 
portion of the multiple regression to be unacceptably high, the expert may seek 
to discover whether some previously undetected variable is missing from the 
analysis.31

Failure to include a major explanatory variable that is correlated with the 
variable of interest in a regression model may cause an included variable to be 
credited with an effect that actually is caused by the excluded variable.32 In gen-
eral, omitted variables that are correlated with the dependent variable reduce the 
probative value of the regression analysis. The importance of omitting a relevant 
variable depends on the strength of the relationship between the omitted variable 
and the dependent variable and the strength of the correlation between the omit-
ted variable and the explanatory variables of interest. Other things being equal, 
the greater the correlation between the omitted variable and the variable of inter-
est, the greater the bias caused by the omission. As a result, the omission of an 
important variable may lead to inferences made from regression analyses that do 
not assist the trier of fact.33

discrimination), cert. denied, 504 U.S. 913 (1992). Whether a particular variable reflects “legitimate” 
considerations or itself reflects or incorporates illegitimate biases is a recurring theme in discrimination 
cases. See, e.g., Smith v. Virginia Commonwealth Univ., 84 F.3d 672, 677 (4th Cir. 1996) (en banc) 
(suggesting that whether “performance factors” should have been included in a regression analysis was 
a question of material fact); id. at 681–82 (Luttig, J., concurring in part) (suggesting that the failure of 
the regression analysis to include “performance factors” rendered it so incomplete as to be inadmis-
sible); id. at 690–91 (Michael, J., dissenting) (suggesting that the regression analysis properly excluded 
“performance factors”); see also Diehl v. Xerox Corp., 933 F. Supp. 1157, 1168 (W.D.N.Y. 1996).

30.  The summary effect of the excluded variables shows up as a random error term in the regres-
sion model, as does any modeling error. See Appendix, infra, for details. But see David W. Peterson, 
Reference Guide on Multiple Regression, 36 Jurimetrics J. 213, 214 n.2 (1996) (review essay) (asserting 
that “the presumption that the combined effect of the explanatory variables omitted from the model 
are uncorrelated with the included explanatory variables” is “a knife-edge condition . . . not likely 
to occur”).

31.  A very low R-squared (R2) is one indication of an unexplained portion of the multiple 
regression model that is unacceptably high. However, the inference that one makes from a particular 
value of R2 will depend, of necessity, on the context of the particular issues under study and the 
particular dataset that is being analyzed. For reasons discussed in the Appendix, a low R2 does not 
necessarily imply a poor model (and vice versa).

32.  Technically, the omission of explanatory variables that are correlated with the variable of 
interest can cause biased estimates of regression parameters.

33.  See Bazemore v. Friday, 751 F.2d 662, 671–72 (4th Cir. 1984) (upholding the district court’s 
refusal to accept a multiple regression analysis as proof of discrimination by a preponderance of the 
evidence, the court of appeals stated that, although the regression used four variable factors (race, 
education, tenure, and job title), the failure to use other factors, including pay increases that varied by 
county, precluded their introduction into evidence), aff’d in part, vacated in part, 478 U.S. 385 (1986).

Note, however, that in Sobel v. Yeshiva University, 839 F.2d 18, 33, 34 (2d Cir. 1988), cert. denied, 
490 U.S. 1105 (1989), the court made clear that “a [Title VII] defendant challenging the validity of 
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Omitting variables that are not correlated with the variable of interest is, in 
general, less of a concern, because the parameter that measures the effect of the 
variable of interest on the dependent variable is estimated without bias. Suppose, 
for example, that the effect of a policy introduced by the courts to encourage 
husbands to pay child support has been tested by randomly choosing some cases 
to be handled according to current court policies and other cases to be handled 
according to a new, more stringent policy. The effect of the new policy might be 
measured by a multiple regression using payment success as the dependent variable 
and a 0 or 1 explanatory variable (1 if the new program was applied; 0 if it was 
not). Failure to include an explanatory variable that reflected the age of the hus-
bands involved in the program would not affect the court’s evaluation of the new 
policy, because men of any given age are as likely to be affected by the old policy 
as they are the new policy. Randomly choosing the court’s policy to be applied 
to each case has ensured that the omitted age variable is not correlated with the 
policy variable.

Bias caused by the omission of an important variable that is related to the 
included variables of interest can be a serious problem.34 Nonetheless, it is pos-
sible for the expert to account for bias qualitatively if the expert has knowledge 
(even if not quantifiable) about the relationship between the omitted variable 
and the explanatory variable. Suppose, for example, that the plaintiff’s expert 
in a sex discrimination pay case is unable to obtain quantifiable data that reflect 
the skills necessary for a job, and that, on average, women are more skillful than 
men. Suppose also that a regression analysis of the wage rate of employees (the 
dependent variable) on years of experience and a variable reflecting the sex of 
each employee (the explanatory variable) suggests that men are paid substantially 
more than women with the same experience. Because differences in skill levels 
have not been taken into account, the expert may conclude reasonably that the 

a multiple regression analysis [has] to make a showing that the factors it contends ought to have been 
included would weaken the showing of salary disparity made by the analysis,” by making a specific 
attack and “a showing of relevance for each particular variable it contends . . . ought to [be] includ[ed]” 
in the analysis, rather than by simply attacking the results of the plaintiffs’ proof as inadequate for lack 
of a given variable. See also Smith v. Virginia Commonwealth Univ., 84 F.3d 672 (4th Cir. 1996) (en 
banc) (finding that whether certain variables should have been included in a regression analysis is a 
question of fact that precludes summary judgment); Freeland v. AT&T, 238 F.R.D. 130, 145 (S.D.N.Y. 
2006) (“Ordinarily, the failure to include a variable in a regression analysis will affect the probative 
value of the analysis and not its admissibility”).

Also, in Bazemore v. Friday, the Court, declaring that the Fourth Circuit’s view of the evidentiary 
value of the regression analyses was plainly incorrect, stated that “[n]ormally, failure to include variables 
will affect the analysis’ probativeness, not its admissibility. Importantly, it is clear that a regression 
analysis that includes less than ‘all measurable variables’ may serve to prove a plaintiff’s case.” 478 U.S. 
385, 400 (1986) (footnote omitted).

34.  See also David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section V.B.3, 
in this manual.
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wage difference measured by the regression is a conservative estimate of the true 
discriminatory wage difference.

The precision of the measure of the effect of a variable of interest on 
the dependent variable is also important.35 In general, the more complete the 
explained relationship between the included explanatory variables and the depen-
dent variable, the more precise the results. Note, however, that the inclusion of 
explanatory variables that are irrelevant (i.e., not correlated with the dependent 
variable) reduces the precision of the regression results. This can be a source of 
concern when the sample size is small, but it is not likely to be of great conse-
quence when the sample size is large.

4. Choosing the functional form of the multiple regression model

Choosing the proper set of variables to be included in the multiple regression 
model does not complete the modeling exercise. The expert must also choose the 
proper form of the regression model. The most frequently selected form is 
the linear regression model (described in the Appendix). In this model, the mag-
nitude of the change in the dependent variable associated with the change in any 
of the explanatory variables is the same no matter what the level of the explana-
tory variables. For example, one additional year of experience might add $5000 
to salary, regardless of the previous experience of the employee.

In some instances, however, there may be reason to believe that changes in 
explanatory variables will have differential effects on the dependent variable as the 
values of the explanatory variables change. In these instances, the expert should 
consider the use of a nonlinear model. Failure to account for nonlinearities can 
lead to either overstatement or understatement of the effect of a change in the 
value of an explanatory variable on the dependent variable.

One particular type of nonlinearity involves the interaction among several 
variables. An interaction variable is the product of two other variables that are 
included in the multiple regression model. The interaction variable allows the 
expert to take into account the possibility that the effect of a change in one vari-
able on the dependent variable may change as the level of another explanatory 
variable changes. For example, in a salary discrimination case, the inclusion of a 
term that interacts a variable measuring experience with a variable representing 
the sex of the employee (1 if a female employee; 0 if a male employee) allows 
the expert to test whether the sex differential varies with the level of experience. 
A significant negative estimate of the parameter associated with the sex variable 
suggests that inexperienced women are discriminated against, whereas a significant 

35.  A more precise estimate of a parameter is an estimate with a smaller standard error. See 
Appendix, infra, for details. 
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negative estimate of the interaction parameter suggests that the extent of discrimi-
nation increases with experience.36

Note that insignificant coefficients in a model with interactions may suggest a 
lack of discrimination, whereas a model without interactions may suggest the con-
trary. It is especially important to account for interaction terms that could affect 
the determination of discrimination; failure to do so may lead to false conclusions 
concerning discrimination.

5. Choosing multiple regression as a method of analysis

There are many multivariate statistical techniques other than multiple regres-
sion that are useful in legal proceedings. Some statistical methods are appropriate 
when nonlinearities are important;37 others apply to models in which the depen-
dent variable is discrete, rather than continuous.38 Still others have been applied 
predominantly to respond to methodological concerns arising in the context of 
discrimination litigation.39

It is essential that a valid statistical method be applied to assist with the analy-
sis in each legal proceeding. Therefore, the expert should be prepared to explain 
why any chosen method, including multiple regression, was more suitable than 
the alternatives.

36.  For further details concerning interactions, see the Appendix, infra. Note that in Ottaviani v. 
State University of New York, 875 F.2d 365, 367 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the 
defendant relied on a regression model in which a dummy variable reflecting gender appeared as an 
explanatory variable. The female plaintiff, however, used an alternative approach in which a regression 
model was developed for men only (the alleged protected group). The salaries of women predicted by 
this equation were then compared with the actual salaries; a positive difference would, according to 
the plaintiff, provide evidence of discrimination. For an evaluation of the methodological advantages 
and disadvantages of this approach, see Joseph L. Gastwirth, A Clarification of Some Statistical Issues in 
Watson v. Fort Worth Bank and Trust, 29 Jurimetrics J. 267 (1989).

37.  These techniques include, but are not limited to, piecewise linear regression, polynomial 
regression, maximum likelihood estimation of models with nonlinear functional relationships, and 
autoregressive and moving-average time-series models. See, e.g., Pindyck & Rubinfeld, supra note 23, 
at 117–21, 136–37, 273–84, 463–601. 

38.  For a discussion of probit analysis and logit analysis, techniques that are useful in the analysis 
of qualitative choice, see id. at 248–81.

39.  The correct model for use in salary discrimination suits is a subject of debate among labor 
economists. As a result, some have begun to evaluate alternative approaches, including urn models 
(Bruce Levin & Herbert Robbins, Urn Models for Regression Analysis, with Applications to Employment 
Discrimination Studies, Law & Contemp. Probs., Autumn 1983, at 247) and, as a means of correct-
ing for measurement errors, reverse regression (Delores A. Conway & Harry V. Roberts, Reverse 
Regression, Fairness, and Employment Discrimination, 1 J. Bus. & Econ. Stat. 75 (1983)). But see Arthur 
S. Goldberger, Redirecting Reverse Regressions, 2 J. Bus. & Econ. Stat. 114 (1984); Arlene S. Ash, The 
Perverse Logic of Reverse Regression, in Statistical Methods in Discrimination Litigation 85 (D.H. Kaye 
& Mikel Aickin eds., 1986).
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III. �Interpreting Multiple Regression 
Results

Multiple regression results can be interpreted in purely statistical terms, through 
the use of significance tests, or they can be interpreted in a more practical, nonsta-
tistical manner. Although an evaluation of the practical significance of regression 
results is almost always relevant in the courtroom, tests of statistical significance 
are appropriate only in particular circumstances.

A. �What Is the Practical, as Opposed to the Statistical, 
Significance of Regression Results?

Practical significance means that the magnitude of the effect being studied is 
not de minimis—it is sufficiently important substantively for the court to be 
concerned. For example, if the average wage rate is $10.00 per hour, a wage 
differential between men and women of $0.10 per hour is likely to be deemed 
practically insignificant because the differential represents only 1% ($0.10/$10.00) 
of the average wage rate.40 That same difference could be statistically significant, 
however, if a sufficiently large sample of men and women was studied.41 The 
reason is that statistical significance is determined, in part, by the number of 
observations in the dataset.

As a general rule, the statistical significance of the magnitude of a regression 
coefficient increases as the sample size increases. Thus, a $1.00 per hour wage 
differential between men and women that was determined to be insignificantly 
different from zero with a sample of 20 men and women could be highly signifi-
cant if the sample size were increased to 200.

Often, results that are practically significant are also statistically significant.42 
However, it is possible with a large dataset to find statistically significant coeffi-

40.  There is no specific percentage threshold above which a result is practically significant. Prac-
tical significance must be evaluated in the context of a particular legal issue. See also David H. Kaye & 
David A. Freedman, Reference Guide on Statistics, Section IV.B.2, in this manual. 

41.  Practical significance also can apply to the overall credibility of the regression results. Thus, 
in McCleskey v. Kemp, 481 U.S. 279 (1987), coefficients on race variables were statistically significant, 
but the Court declined to find them legally or constitutionally significant.

42.  In Melani v. Board of Higher Education, 561 F. Supp. 769, 774 (S.D.N.Y. 1983), a Title VII 
suit was brought against the City University of New York (CUNY) for allegedly discriminating against 
female instructional staff in the payment of salaries. One approach of the plaintiff’s expert was to use 
multiple regression analysis. The coefficient on the variable that reflected the sex of the employee 
was approximately $1800 when all years of data were included. Practically (in terms of average wages 
at the time) and statistically (in terms of a 5% significance test), this result was significant. Thus, the 
court stated that “[p]laintiffs have produced statistically significant evidence that women hired as CUNY 
instructional staff since 1972 received substantially lower salaries than similarly qualified men.” Id. at 
781 (emphasis added). For a related analysis involving multiple comparison, see Csicseri v. Bowsher, 
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cients that are practically insignificant. Similarly, it is also possible (especially when 
the sample size is small) to obtain results that are practically significant but fail to 
achieve statistical significance. Suppose, for example, that an expert undertakes a 
damages study in a patent infringement case and predicts “but-for sales”—what 
sales would have been had the infringement not occurred—using data that predate 
the period of alleged infringement. If data limitations are such that only 3 or 4 
years of preinfringement sales are known, the difference between but-for sales and 
actual sales during the period of alleged infringement could be practically signifi-
cant but statistically insignificant. Alternatively, with only 3 or 4 data points, the 
expert would be unable to detect an effect, even if one existed.

1. When should statistical tests be used?

A test of a specific contention, a hypothesis test, often assists the court in determin-
ing whether a violation of the law has occurred in areas in which direct evidence 
is inaccessible or inconclusive. For example, an expert might use hypothesis tests 
in race and sex discrimination cases to determine the presence of a discriminatory 
effect.

Statistical evidence alone never can prove with absolute certainty the worth 
of any substantive theory. However, by providing evidence contrary to the view 
that a particular form of discrimination has not occurred, for example, the mul-
tiple regression approach can aid the trier of fact in assessing the likelihood that 
discrimination has occurred.43

Tests of hypotheses are appropriate in a cross-sectional analysis, in which the 
data underlying the regression study have been chosen as a sample of a population 
at a particular point in time, and in a time-series analysis, in which the data being 
evaluated cover a number of time periods. In either analysis, the expert may want 
to evaluate a specific hypothesis, usually relating to a question of liability or to the 
determination of whether there is measurable impact of an alleged violation. Thus, 
in a sex discrimination case, an expert may want to evaluate a null hypothesis of 
no discrimination against the alternative hypothesis that discrimination takes a par-

862 F. Supp. 547, 572 (D.D.C. 1994) (noting that plaintiff’s expert found “statistically significant 
instances of discrimination” in 2 of 37 statistical comparisons, but suggesting that “2 of 37 amounts to 
roughly 5% and is hardly indicative of a pattern of discrimination”), aff’d, 67 F.3d 972 (D.C. Cir. 1995).

43.  See International Brotherhood. of Teamsters v. United States, 431 U.S. 324 (1977) (the 
Court inferred discrimination from overwhelming statistical evidence by a preponderance of the evi-
dence); Ryther v. KARE 11, 108 F.3d 832, 844 (8th Cir. 1997) (“The plaintiff produced overwhelm-
ing evidence as to the elements of a prima facie case, and strong evidence of pretext, which, when 
considered with indications of age-based animus in [plaintiff’s] work environment, clearly provide 
sufficient evidence as a matter of law to allow the trier of fact to find intentional discrimination.”); 
Paige v. California, 291 F.3d 1141 (9th Cir. 2002) (allowing plaintiffs to rely on aggregated data to 
show employment discrimination).
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ticular form.44 Alternatively, in an antitrust damages proceeding, the expert may 
want to test a null hypothesis of no legal impact against the alternative hypothesis 
that there was an impact. In either type of case, it is important to realize that 
rejection of the null hypothesis does not in itself prove legal liability. It is possible 
to reject the null hypothesis and believe that an alternative explanation other than 
one involving legal liability accounts for the results.45

 

Often, the null hypothesis is stated in terms of a particular regression coeffi
cient being equal to 0. For example, in a wage discrimination case, the null 
hypothesis would be that there is no wage difference between sexes. If a negative 
difference is observed (meaning that women are found to earn less than men, after 
the expert has controlled statistically for legitimate alternative explanations), the 
difference is evaluated as to its statistical significance using the t-test.46 The t-test 
uses the t-statistic to evaluate the hypothesis that a model parameter takes on a 
particular value, usually 0.

2. What is the appropriate level of statistical significance?

In most scientific work, the level of statistical significance required to reject the 
null hypothesis (i.e., to obtain a statistically significant result) is set convention-
ally at 0.05, or 5%.47 The significance level measures the probability that the 
null hypothesis will be rejected incorrectly. In general, the lower the percent-
age required for statistical significance, the more difficult it is to reject the null 
hypothesis; therefore, the lower the probability that one will err in doing so. 
Although the 5% criterion is typical, reporting of more stringent 1% significance 
tests or less stringent 10% tests can also provide useful information.

	 In doing a statistical test, it is useful to compute an observed significance 
level, or p-value. The p-value associated with the null hypothesis that a regression 
coefficient is 0 is the probability that a coefficient of this magnitude or larger could 
have occurred by chance if the null hypothesis were true. If the p-value were less 
than or equal to 5%, the expert would reject the null hypothesis in favor of the 

44.  Tests are also appropriate when comparing the outcomes of a set of employer decisions with 
those that would have been obtained had the employer chosen differently from among the available 
options.

45.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section IV.C.5, 
in this manual.

46.  The t-test is strictly valid only if a number of important assumptions hold. However, for 
many regression models, the test is approximately valid if the sample size is sufficiently large. See 
Appendix, infra, for a more complete discussion of the assumptions underlying multiple regression..

47.  See, e.g., Palmer v. Shultz, 815 F.2d 84, 92 (D.C. Cir. 1987) (“‘the .05 level of significance 
. . . [is] certainly sufficient to support an inference of discrimination’” (quoting Segar v. Smith, 738 
F.2d 1249, 1283 (D.C. Cir. 1984), cert. denied, 471 U.S. 1115 (1985))); United States v. Delaware, 
2004 U.S. Dist. LEXIS 4560 (D. Del. Mar. 22, 2004) (stating that .05 is the normal standard chosen). 
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alternative hypothesis; if the p-value were greater than 5%, the expert would fail 
to reject the null hypothesis.48

3. Should statistical tests be one-tailed or two-tailed?

When the expert evaluates the null hypothesis that a variable of interest has no 
linear association with a dependent variable against the alternative hypothesis that 
there is an association, a two-tailed test, which allows for the effect to be either 
positive or negative, is usually appropriate. A one-tailed test would usually be 
applied when the expert believes, perhaps on the basis of other direct evidence 
presented at trial, that the alternative hypothesis is either positive or negative, but 
not both. For example, an expert might use a one-tailed test in a patent infringe-
ment case if he or she strongly believes that the effect of the alleged infringement 
on the price of the infringed product was either zero or negative. (The sales of 
the infringing product competed with the sales of the infringed product, thereby 
lowering the price.) By using a one-tailed test, the expert is in effect stating that 
prior to looking at the data it would be very surprising if the data pointed in the 
direct opposite to the one posited by the expert.

Because using a one-tailed test produces p-values that are one-half the size of 
p-values using a two-tailed test, the choice of a one-tailed test makes it easier for 
the expert to reject a null hypothesis. Correspondingly, the choice of a two-tailed 
test makes null hypothesis rejection less likely. Because there is some arbitrariness 
involved in the choice of an alternative hypothesis, courts should avoid relying 
solely on sharply defined statistical tests.49 Reporting the p-value or a confidence 
interval should be encouraged because it conveys useful information to the court, 
whether or not a null hypothesis is rejected.

48.  The use of 1%, 5%, and, sometimes, 10% levels for determining statistical significance 
remains a subject of debate. One might argue, for example, that when regression analysis is used in 
a price-fixing antitrust case to test a relatively specific alternative to the null hypothesis (e.g., price 
fixing), a somewhat lower level of confidence (a higher level of significance, such as 10% ) might be 
appropriate. Otherwise, when the alternative to the null hypothesis is less specific, such as the rather 
vague alternative of “effect” (e.g., the price increase is caused by the increased cost of production, 
increased demand, a sharp increase in advertising, or price fixing), a high level of confidence (associated 
with a low significance level, such as 1%) may be appropriate. See, e.g., Vuyanich v. Republic Nat’l 
Bank, 505 F. Supp. 224, 272 (N.D. Tex. 1980) (noting the “arbitrary nature of the adoption of the 
5% level of [statistical] significance” to be required in a legal context); Cook v. Rockwell Int’l Corp., 
2006 U.S. Dist. LEXIS 89121 (D. Colo. Dec. 7, 2006). 

49.  Courts have shown a preference for two-tailed tests. See, e.g., Palmer v. Shultz, 815 F.2d 
84, 95–96 (D.C. Cir. 1987) (rejecting the use of one-tailed tests, the court found that because some 
appellants were claiming overselection for certain jobs, a two-tailed test was more appropriate in Title 
VII cases); Moore v. Summers, 113 F. Supp. 2d 5, 20 (D.D.C. 2000) (reiterating the preference for a 
two-tailed test). See also David H. Kaye & David A. Freedman, Reference Guide on Statistics, Sec-
tion IV.C.2, in this manual; Csicseri v. Bowsher, 862 F. Supp. 547, 565 (D.D.C. 1994) (finding that 
although a one-tailed test is “not without merit,” a two-tailed test is preferable).
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B. Are the Regression Results Robust?
The issue of robustness—whether regression results are sensitive to slight modi-
fications in assumptions (e.g., that the data are measured accurately)—is of vital 
importance. If the assumptions of the regression model are valid, standard statistical 
tests can be applied. However, when the assumptions of the model are violated, 
standard tests can overstate or understate the significance of the results.

The violation of an assumption does not necessarily invalidate a regres-
sion analysis, however. In some instances in which the assumptions of multiple 
regression analysis fail, there are other statistical methods that are appropriate. 
Consequently, experts should be encouraged to provide additional information 
that relates to the issue of whether regression assumptions are valid, and if they 
are not valid, the extent to which the regression results are robust. The following 
questions highlight some of the more important assumptions of regression analysis.

1. �What evidence exists that the explanatory variable causes changes in 
the dependent variable?

In the multiple regression framework, the expert often assumes that changes in 
explanatory variables affect the dependent variable, but changes in the dependent 
variable do not affect the explanatory variables—that is, there is no feedback.50 
In making this assumption, the expert draws the conclusion that a correlation 
between a covariate and the dependent outcome variable results from the effect of 
the former on the latter and not vice versa. Were it the case that the causality was 
reversed so that the outcome variable affected the covariate, and not vice versa, 
spurious correlation is likely to cause the expert and the trier of fact to reach the 
wrong conclusion. Finally, it is possible in some cases that both the outcome vari-
able and the covariate each affect the other; if the expert does not take this more 
complex relationship into account, the regression coefficient on the variable of 
interest could be either too high or too low.51

 

Figure 1 illustrates this point. In Figure 1(a), the dependent variable, price, is 
explained through a multiple regression framework by three covariate explanatory 
variables—demand, cost, and advertising—with no feedback. Each of the three 
covariates is assumed to affect price causally, while price is assumed to have no 
effect on the three covariates. However, in Figure 1(b), there is feedback, because 
price affects demand, and demand, cost, and advertising affect price. Cost and 
advertising, however, are not affected by price. In this case both price and demand 
are jointly determined; each has a causal effect on the other.

50.  The assumption of no feedback is especially important in litigation, because it is possible for 
the defendant (if responsible, for example, for price fixing or discrimination) to affect the values of 
the explanatory variables and thus to bias the usual statistical tests that are used in multiple regression.

51.  When both effects occur at the same time, this is described as “simultaneity.”
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Figure 1. Feedback.

As a general rule, there are no basic direct statistical tests for determining the 
direction of causality; rather, the expert, when asked, should be prepared to defend 
his or her assumption based on an understanding of the underlying behavior evi-
dence relating to the businesses or individuals involved.52

Although there is no single approach that is entirely suitable for estimating 
models when the dependent variable affects one or more explanatory variables, 
one possibility is for the expert to drop the questionable variable from the regres-
sion to determine whether the variable’s exclusion makes a difference. If it does 
not, the issue becomes moot. Another approach is for the expert to expand the 
multiple regression model by adding one or more equations that explain the rela-
tionship between the explanatory variable in question and the dependent variable.

Suppose, for example, that in a salary-based sex discrimination suit the defen-
dant’s expert considers employer-evaluated test scores to be an appropriate explan-
atory variable for the dependent variable, salary. If the plaintiff were to provide 
information that the employer adjusted the test scores in a manner that penalized 
women, the assumption that salaries were determined by test scores and not that 
test scores were affected by salaries might be invalid. If it is clearly inappropriate, 

52.  There are statistical time-series tests for particular formulations of causality; see Pindyck & 
Rubinfeld, supra note 23, § 9.2.
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the test-score variable should be removed from consideration. Alternatively, the 
information about the employer’s use of the test scores could be translated into 
a second equation in which a new dependent variable—test score—is related to 
workers’ salary and sex. A test of the hypothesis that salary and sex affect test scores 
would provide a suitable test of the absence of feedback.

2. �To what extent are the explanatory variables correlated with each other?

It is essential in multiple regression analysis that the explanatory variable of interest 
not be correlated perfectly with one or more of the other explanatory variables. 
If there were perfect correlation between two variables, the expert could not 
separate out the effect of the variable of interest on the dependent variable from 
the effect of the other variable. In essence, there are two explanations for the 
same pattern in the data. Suppose, for example, that in a sex discrimination suit, a 
particular form of job experience is determined to be a valid source of high wages. 
If all men had the requisite job experience and all women did not, it would be 
impossible to tell whether wage differentials between men and women were the 
result of sex discrimination or differences in experience.

When two or more explanatory variables are correlated perfectly—that is, 
when there is perfect collinearity—one cannot estimate the regression parameters. 
The existing dataset does not allow one to distinguish between alternative com-
peting explanations of the movement in the dependent variable. However, when 
two or more variables are highly, but not perfectly, correlated—that is, when there 
is multicollinearity—the regression can be estimated, but some concerns remain. 
The greater the multicollinearity between two variables, the less precise are the 
estimates of individual regression parameters, and an expert is less able to distin-
guish among competing explanations for the movement in the outcome variable 
(even though there is no problem in estimating the joint influence of the two 
variables and all other regression parameters).53

Fortunately, the reported regression statistics take into account any multi
collinearity that might be present.54

 It is important to note as a corollary, how-
ever, that a failure to find a strong relationship between a variable of interest and 

53.  See Griggs v. Duke Power Co., 401 U.S. 424 (1971) (The court argued that an education 
requirement was one rationalization of the data, but racial discrimination was another. If you had put 
both race and education in the regression, it would have been asking too much of the data to tell 
which variable was doing the real work, because education and race were so highly correlated in the 
market at that time.). 

54.  See Denny v. Westfield State College, 669 F. Supp. 1146, 1149 (D. Mass. 1987) (The court 
accepted the testimony of one expert that “the presence of multicollinearity would merely tend to 
overestimate the amount of error associated with the estimate. . . . In other words, p-values will be 
artificially higher than they would be if there were no multicollinearity present.”) (emphasis added); 
In re High Fructose Corn Syrup Antitrust Litig., 295 F.3d 651, 659 (7th Cir. Ill. 2002) (refusing to 
second-guess district court’s admission of regression analyses that addressed multicollinearity in dif-
ferent ways).
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a dependent variable need not imply that there is no relationship.55 A relatively 
small sample, or even a large sample with substantial multicollinearity, may not 
provide sufficient information for the expert to determine whether there is a 
relationship.

3. �To what extent are individual errors in the regression model 
independent?

If the expert calculated the parameters of a multiple regression model using as data 
the entire population, the estimates might still measure the model’s population 
parameters with error. Errors can arise for a number of reasons, including (1) the 
failure of the model to include the appropriate explanatory variables, (2) the failure 
of the model to reflect any nonlinearities that might be present, and (3) the inclu-
sion of inappropriate variables in the model. (Of course, further sources of error 
will arise if a sample, or subset, of the population is used to estimate the regression 
parameters.)

It is useful to view the cumulative effect of all of these sources of modeling 
error as being represented by an additional variable, the error term, in the mul-
tiple regression model. An important assumption in multiple regression analysis is 
that the error term and each of the explanatory variables are independent of each 
other. (If the error term and an explanatory variable are independent, they are not 
correlated with each other.) To the extent this is true, the expert can estimate the 
parameters of the model without bias; the magnitude of the error term will affect 
the precision with which a model parameter is estimated, but will not cause that 
estimate to be consistently too high or too low.

The assumption of independence may be inappropriate in a number of cir-
cumstances. In some instances, failure of the assumption makes multiple regres-
sion analysis an unsuitable statistical technique; in other instances, modifications 
or adjustments within the regression framework can be made to accommodate 
the failure.

The independence assumption may fail, for example, in a study of individual 
behavior over time, in which an unusually high error value in one time period is 
likely to lead to an unusually high value in the next time period. For example, if 
an economic forecaster underpredicted this year’s Gross Domestic Product, he or 
she is likely to underpredict next year’s as well; the factor that caused the predic-
tion error (e.g., an incorrect assumption about Federal Reserve policy) is likely 
to be a source of error in the future.

55.  If an explanatory variable of concern and another explanatory variable are highly correlated, 
dropping the second variable from the regression can be instructive. If the coefficient on the explana-
tory variable of concern becomes significant, a relationship between the dependent variable and the 
explanatory variable of concern is suggested.
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Alternatively, the assumption of independence may fail in a study of a group 
of firms at a particular point in time, in which error terms for large firms are sys-
tematically higher than error terms for small firms. For example, an analysis of the 
profitability of firms may not accurately account for the importance of advertising 
as a source of increased sales and profits. To the extent that large firms advertise 
more than small firms, the regression errors would be large for the large firms and 
small for the small firms. A third possibility is that the dependent variable varies 
at the individual level, but the explanatory variable of interest varies only at the 
level of a group. For example, an expert might be viewing the price of a product 
in an antitrust case as a function of a variable or variables that measure the market-
ing channel through which the product is sold (e.g., wholesale or retail). In this 
case, errors within each of the marketing groups are likely not to be independent. 
Failure to account for this could cause the expert to overstate the statistical sig-
nificance of the regression parameters.

In some instances, there are statistical tests that are appropriate for evaluating 
the independence assumption.56 If the assumption has failed, the expert should 
ask first whether the source of the lack of independence is the omission of an 
important explanatory variable from the regression. If so, that variable should be 
included when possible, or the potential effect of its omission should be estimated 
when inclusion is not possible. If there is no important missing explanatory vari-
able, the expert should apply one or more procedures that modify the standard 
multiple regression technique to allow for more accurate estimates of the regres-
sion parameters.57

4. �To what extent are the regression results sensitive to individual data 
points?

Estimated regression coefficients can be highly sensitive to particular data points. 
Suppose, for example, that one data point deviates greatly from its expected value, 
as indicated by the regression equation, while the remaining data points show 

56.  In a time-series analysis, the correlation of error values over time, the “serial correlation,” 
can be tested (in most instances) using a number of tests, including the Durbin-Watson test. The 
possibility that some error terms are consistently high in magnitude and others are systematically low, 
heteroscedasticity can also be tested in a number of ways. See, e.g., Pindyck & Rubinfeld, supra note 
23, at 146–59. When serial correlation and/or heteroscedasticity are present, the standard errors asso-
ciated with the estimated coefficients must be modified. For a discussion of the use of such “robust” 
standard errors, see Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, ch. 8 
(4th ed. 2009).

57.  When serial correlation is present, a number of closely related statistical methods are appro-
priate, including generalized differencing (a type of generalized least squares) and maximum likelihood 
estimation. When heteroscedasticity is the problem, weighted least squares and maximum likelihood esti-
mation are appropriate. See, e.g., id. All these techniques are readily available in a number of statistical 
computer packages. They also allow one to perform the appropriate statistical tests of the significance of 
the regression coefficients.
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little deviation. It would not be unusual in this situation for the coefficients in 
a multiple regression to change substantially if the data point in question were 
removed from the sample.

Evaluating the robustness of multiple regression results is a complex endeavor. 
Consequently, there is no agreed set of tests for robustness that analysts should 
apply. In general, it is important to explore the reasons for unusual data points. If 
the source is an error in recording data, the appropriate corrections can be made. 
If all the unusual data points have certain characteristics in common (e.g., they 
all are associated with a supervisor who consistently gives high ratings in an equal 
pay case), the regression model should be modified appropriately.

One generally useful diagnostic technique is to determine to what extent 
the estimated parameter changes as each data point in the regression analysis is 
dropped from the sample. An influential data point—a point that causes the esti-
mated parameter to change substantially—should be studied further to determine 
whether mistakes were made in the use of the data or whether important explana-
tory variables were omitted.58

5. To what extent are the data subject to measurement error?

In multiple regression analysis it is assumed that variables are measured accu-
rately.59 If there are measurement errors in the dependent variable, estimates of 
regression parameters will be less accurate, although they will not necessarily be 
biased. However, if one or more independent variables are measured with error, 
the corresponding parameter estimates are likely to be biased, typically toward 
zero (and other coefficient estimates are likely to be biased as well). 

To understand why, suppose that the dependent variable, salary, is measured 
without error, and the explanatory variable, experience, is subject to measurement 
error. (Seniority or years of experience should be accurate, but the type of experi-
ence is subject to error, because applicants may overstate previous job responsibili-
ties.) As the measurement error increases, the estimated parameter associated with 
the experience variable will tend toward zero, that is, eventually, there will be no 
relationship between salary and experience.

It is important for any source of measurement error to be carefully evaluated. 
In some circumstances, little can be done to correct the measurement-error prob-

58.  A more complete and formal treatment of the robustness issue appears in David A. Belsley et 
al., Regression Diagnostics: Identifying Influential Data and Sources of Collinearity 229–44 (1980). For 
a useful discussion of the detection of outliers and the evaluation of influential data points, see R.D. 
Cook & S. Weisberg, Residuals and Influence in Regression (Monographs on Statistics and Applied 
Probability No. 18, 1982). For a broad discussion of robust regression methods, see Peer J. Rouseeuw 
& Annick M. Leroy, Robust Regression and Outlier Detection (2004). 

59.  Inaccuracy can occur not only in the precision with which a particular variable is measured, 
but also in the precision with which the variable to be measured corresponds to the appropriate theo-
retical construct specified by the regression model. 
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lem; the regression results must be interpreted in that light. In other circumstances, 
however, the expert can correct measurement error by finding a new, more reli-
able data source. Finally, alternative estimation techniques (using related variables 
that are measured without error) can be applied to remedy the measurement-error 
problem in some situations.60 

IV. The Expert
Multiple regression analysis is taught to students in extremely diverse fields, 
including statistics, economics, political science, sociology, psychology, anthro-
pology, public health, and history. Nonetheless, the methodology is difficult to 
master, necessitating a combination of technical skills (the science) and experience 
(the art). This naturally raises two questions:

1.	 Who should be qualified as an expert?
2.	 When and how should the court appoint an expert to assist in the evalu-

ation of statistical issues, including those relating to multiple regression?

A. Who Should Be Qualified as an Expert? 
Any individual with substantial training in and experience with multiple regression 
and other statistical methods may be qualified as an expert.61 A doctoral degree in 
a discipline that teaches theoretical or applied statistics, such as economics, history, 
and psychology, usually signifies to other scientists that the proposed expert meets 
this preliminary test of the qualification process.

The decision to qualify an expert in regression analysis rests with the court. 
Clearly, the proposed expert should be able to demonstrate an understanding of 
the discipline. Publications relating to regression analysis in peer-reviewed jour-
nals, active memberships in related professional organizations, courses taught on 
regression methods, and practical experience with regression analysis can indicate 
a professional’s expertise. However, the expert’s background and experience with 
the specific issues and tools that are applicable to a particular case should also be 
considered during the qualification process. Thus, if the regression methods are 
being utilized to evaluate damages in an antitrust case, the qualified expert should 
have sufficient qualifications in economic analysis as well as statistics. An individual 
whose expertise lies solely with statistics will be limited in his or her ability to 
evaluate the usefulness of alternative economic models. Similarly, if a case involves 

60.  See, e.g., Pindyck & Rubinfeld, supra note 23, at 178–98 (discussion of instrumental variables 
estimation).

61.  A proposed expert whose only statistical tool is regression analysis may not be able to judge 
when a statistical analysis should be based on an approach other than regression analysis.
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eyewitness identification, a background in psychology as well as statistics may 
provide essential qualifying elements.

B. Should the Court Appoint a Neutral Expert?
There are conflicting views on the issue of whether court-appointed experts 
should be used. In complex cases in which two experts are presenting conflicting 
statistical evidence, the use of a “neutral” court-appointed expert can be advan-
tageous. There are those who believe, however, that there is no such thing as a 
truly “neutral” expert. In any event, if an expert is chosen, that individual should 
have substantial expertise and experience—ideally, someone who is respected by 
both plaintiffs and defendants.62

The appointment of such an expert is likely to influence the presentation of 
the statistical evidence by the experts for the parties in the litigation. The neutral 
expert will have an incentive to present a balanced position that relies on broad 
principles for which there is consensus in the community of experts. As a result, 
the parties’ experts can be expected to present testimony that confronts core issues 
that are likely to be of concern to the court and that is sufficiently balanced to be 
persuasive to the court-appointed expert.63

Rule 706 of the Federal Rules of Evidence governs the selection and instruc-
tion of court-appointed experts. In particular:

1.	 The expert should be notified of his or her duties through a written court 
order or at a conference with the parties.

2.	 The expert should inform the parties of his or her findings orally or in 
writing.

3.	 If deemed appropriate by the court, the expert should be available to testify 
and may be deposed or cross-examined by any party.

4.	 The court must determine the expert’s compensation.64

5.	 The parties should be free to utilize their own experts.

Although not required by Rule 706, it will usually be advantageous for the 
court to opt for the appointment of a neutral expert as early in the litigation pro-
cess as possible. It will also be advantageous to minimize any ex parte contact with 

62.  Judge Posner notes in In re High Fructose Corn Syrup Antitrust Litig., 295 F.2d 651, 665 (7th 
Cir., 2002), “the judge and jury can repose a degree of confidence in his testimony that it could not 
repose in that of a party’s witness. The judge and the jury may not understand the neutral expert 
perfectly but at least they will know that he has no axe to grind, and so, to a degree anyway, they will 
be able to take his testimony on faith.”

63.  For a discussion of the presentation of expert evidence generally, including the use of court-
appointed experts, see Samuel R. Gross, Expert Evidence, 1991 Wis. L. Rev. 1113 (1991).

64.  Although Rule 706 states that the compensation must come from public funds, complex 
litigation may be sufficiently costly as to require that the parties share the costs of the neutral expert.
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the neutral expert; this will diminish the possibility that one or both parties will 
come to the view that the court’s ultimate opinion was unreasonably influenced 
by the neutral expert.

Rule 706 does not offer specifics as to the process of appointment of a court-
appointed expert. One possibility is to have the parties offer a short list of possible 
appointees. If there was no common choice, the court could select from the com-
bined list, perhaps after allowing each party to exercise one or more peremptory 
challenges. Another possibility is to obtain a list of recommended experts from a 
selection of individuals known to be experts in the field.

V. Presentation of Statistical Evidence
The costs of evaluating statistical evidence can be reduced and the precision of 
that evidence increased if the discovery process is used effectively. In evaluating 
the admissibility of statistical evidence, courts should consider the following issues:

1.	 Has the expert provided sufficient information to replicate the multiple 
regression analysis?

2.	 Are the expert’s methodological choices reasonable, or are they arbitrary 
and unjustified?

A. �What Disagreements Exist Regarding Data on Which the 
Analysis Is Based?

In general, a clear and comprehensive statement of the underlying research 
methodology is a requisite part of the discovery process. The expert should be 
encouraged to reveal both the nature of the experimentation carried out and the 
sensitivity of the results to the data and to the methodology.

The following suggestions are useful requirements that can substantially 
improve the discovery process:

1.	 To the extent possible, the parties should be encouraged to agree to use 
a common database. Even if disagreement about the significance of the 
data remains, early agreement on a common database can help focus the 
discovery process on the important issues in the case.

2.	 A party that offers data to be used in statistical work, including multiple 
regression analysis, should be encouraged to provide the following to the 
other parties: (a) a hard copy of the data when available and manageable 
in size, along with the underlying sources; (b) computer disks or tapes on 
which the data are recorded; (c) complete documentation of the disks or 
tapes; (d) computer programs that were used to generate the data (in hard 
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copy if necessary, but preferably on a computer disk or tape, or both); 
and (e) documentation of such computer programs. The documentation 
should be sufficiently complete and clear so that the opposing expert can 
reproduce all of the statistical work.

3.	 A party offering data should make available the personnel involved in the 
compilation of such data to answer the other parties’ technical questions 
concerning the data and the methods of collection or compilation.

4.	 A party proposing to offer an expert’s regression analysis at trial should 
ask the expert to fully disclose (a) the database and its sources,65 (b) the 
method of collecting the data, and (c) the methods of analysis. When pos-
sible, this disclosure should be made sufficiently in advance of trial so that 
the opposing party can consult its experts and prepare cross-examination. 
The court must decide on a case-by-case basis where to draw the disclo-
sure line.

5.	 An opposing party should be given the opportunity to object to a database 
or to a proposed method of analysis of the database to be offered at trial. 
Objections may be to simple clerical errors or to more complex issues 
relating to the selection of data, the construction of variables, and, on 
occasion, the particular form of statistical analysis to be used. Whenever 
possible, these objections should be resolved before trial.

6.	 The parties should be encouraged to resolve differences as to the appro-
priateness and precision of the data to the extent possible by informal 
conference. The court should make an effort to resolve differences before 
trial.

These suggestions are motivated by the objective of improving the discovery 
process to make it more informative. The fact that these questions may raise some 
doubts or concerns about a particular regression model should not be taken to 
mean that the model does not provide useful information. It does, however, take 
considerable skill for an expert to determine the extent to which information is 
useful when the model being utilized has some shortcomings.

B. �Which Database Information and Analytical Procedures 
Will Aid in Resolving Disputes over Statistical Studies?66

To help resolve disputes over statistical studies, experts should follow the guide-
lines below when presenting database information and analytical procedures:

65.  These sources would include all variables used in the statistical analyses conducted by the 
expert, not simply those variables used in a final analysis on which the expert expects to rely.

66.  For a more complete discussion of these requirements, see The Evolving Role of Statistical 
Assessments as Evidence in the Courts, app. F at 256 (Stephen E. Fienberg ed., 1989) (Recommended 
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1.	 The expert should state clearly the objectives of the study, as well as the time 
frame to which it applies and the statistical population to which the results 
are being projected.

2.	 The expert should report the units of observation (e.g., consumers, busi-
nesses, or employees).

3.	 The expert should clearly define each variable.
4.	 The expert should clearly identify the sample for which data are being 

studied,67 as well as the method by which the sample was obtained.
5.	 The expert should reveal if there are missing data, whether caused by a 

lack of availability (e.g., in business data) or nonresponse (e.g., in survey 
data), and the method used to handle the missing data (e.g., deletion of 
observations).

6.	 The expert should report investigations into errors associated with the 
choice of variables and assumptions underlying the regression model.

7.	 If samples were chosen randomly from a population (i.e., probability sam-
pling procedures were used),68 the expert should make a good-faith effort 
to provide an estimate of a sampling error, the measure of the difference 
between the sample estimate of a parameter (such as the mean of a depen-
dent variable under study), and the (unknown) population parameter (the 
population mean of the variable).69

8.	 If probability sampling procedures were not used, the expert should report 
the set of procedures that was used to minimize sampling errors.

Standards on Disclosure of Procedures Used for Statistical Studies to Collect Data Submitted in Evi-
dence in Legal Cases).

67.  The sample information is important because it allows the expert to make inferences about 
the underlying population.

68.  In probability sampling, each representative of the population has a known probability of 
being in the sample. Probability sampling is ideal because it is highly structured, and in principle, it 
can be replicated by others. Nonprobability sampling is less desirable because it is often subjective, 
relying to a large extent on the judgment of the expert.

69.  Sampling error is often reported in terms of standard errors or confidence intervals. See 
Appendix, infra, for details.
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Appendix: The Basics of Multiple Regression
A. Introduction
This appendix illustrates, through examples, the basics of multiple regression 
analysis in legal proceedings. Often, visual displays are used to describe the rela-
tionship between variables that are used in multiple regression analysis. Figure 2 is 
a scatterplot that relates scores on a job aptitude test (shown on the x-axis) and job 
performance ratings (shown on the y-axis). Each point on the scatterplot shows 
where a particular individual scored on the job aptitude test and how his or her 
job performance was rated. For example, the individual represented by Point A in 
Figure 2 scored 49 on the job aptitude test and had a job performance rating of 62.

The relationship between two variables can be summarized by a correlation 
coefficient, which ranges in value from –1 (a perfect negative relationship) to 
+1 (a perfect positive relationship). Figure 3 depicts three possible relationships 
between the job aptitude variable and the job performance variable. In Figure 3(a), 
there is a positive correlation: In general, higher job performance ratings are 
associated with higher aptitude test scores, and lower job performance ratings 
are associated with lower aptitude test scores. In Figure 3(b), the correlation is 
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Figure 2. Scatterplot of scores on a job aptitude test relative to job performance 
rating.
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negative: Higher job performance ratings are associated with lower aptitude test 
scores, and lower job performance ratings are associated with higher aptitude 
test scores. Positive and negative correlations can be relatively strong or relatively 
weak. If the relationship is sufficiently weak, there is effectively no correlation, as 
is illustrated in Figure 3(c).

Multiple regression analysis goes beyond the calculation of correlations; it is a 
method in which a regression line is used to relate the average of one variable—the 
dependent variable—to the values of other explanatory variables. As a result, regres-
sion analysis can be used to predict the values of one variable using the values of 
others. For example, if average job performance ratings depend on aptitude test scores, 
regression analysis can use information about test scores to predict job performance.
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Figure 3. �Correlation between the job aptitude variable and the job performance 
variable: (a) positive correlation, (b) negative correlation, (c) weak rela-
tionship with no correlation.
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A regression line is the best-fitting straight line through a set of points in a 
scatterplot. If there is only one explanatory variable, the straight line is defined 
by the equation

	 Y = a + bX.	 (1)

In equation (1), a is the intercept of the line with the y-axis when X equals 0, 
and b is the slope—the change in the dependent variable associated with a 1-unit 
change in the explanatory variable. In Figure 4, for example, when the aptitude test 
score is 0, the predicted (average) value of the job performance rating is the inter-
cept, 18.4. Also, for each additional point on the test score, the job performance 
rating increases .73 units, which is given by the slope .73. Thus, the estimated 
regression line is

	 Y X= +184 73. . . 	 (2)

The regression line typically is estimated using the standard method of least 
squares, where the values of a and b are calculated so that the sum of the squared 
deviations of the points from the line are minimized. In this way, positive devia-
tions and negative deviations of equal size are counted equally, and large deviations 
are counted more than small deviations. In Figure 4 the deviation lines are verti-
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cal because the equation is predicting job performance ratings from aptitude test 
scores, not aptitude test scores from job performance ratings.

The important variables that systematically might influence the depen-
dent variable, and for which data can be obtained, typically should be included 
explicitly in a statistical model. All remaining influences, which should be small 
individually, but can be substantial in the aggregate, are included in an additional 
random error term.70 Multiple regression is a procedure that separates the sys-
tematic effects (associated with the explanatory variables) from the random effects 
(associated with the error term) and also offers a method of assessing the success 
of the process.

B. Linear Regression Model
When there are an arbitrary number of explanatory variables, the linear regression 
model takes the following form:

	 Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε	 (3)

where Y represents the dependent variable, such as the salary of an employee, 
and X1 . . . Xk represent the explanatory variables (e.g., the experience of each 
employee and his or her sex, coded as a 1 or 0, respectively). The error term, 
e, represents the collective unobservable influence of any omitted variables. In a 
linear regression, each of the terms being added involves unknown parameters, 
b0, b1, . . . bk,

71 which are estimated by “fitting” the equation to the data using 
least squares.

Each estimated coefficient βk measures how the dependent variable Y 
responds, on average, to a change in the corresponding covariate Xk, after “con-
trolling for” all the other covariates. The informal phrase “controlling for” has 
a specific statistical meaning. Consider the following three-step procedure. First, 
we calculate the residuals from a regression of Y on all covariates other than Xk. 
Second, we calculate the residuals of a regression of Xk on all the other covariates. 
Third, and finally, we regress the first residual variable on the second residual 
variable. The resulting coefficient will be identically equal to βk. Thus, the coeffi

70.  It is clearly advantageous for the random component of the regression relationship to be 
small relative to the variation in the dependent variable.

71.  The variables themselves can appear in many different forms. For example, Y might repre-
sent the logarithm of an employee’s salary, and X1 might represent the logarithm of the employee’s 
years of experience. The logarithmic representation is appropriate when Y increases exponentially as 
X increases—for each unit increase in X, the corresponding increase in Y becomes larger and larger. 
For example, if an expert were to graph the growth of the U.S. population (Y ) over time (t), the 
following equation might be appropriate:

log(Y) = b0 + b1log(t).
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cient in a multiple regression represents the slope of the line “Y, adjusted for all 
covariates other than Xk versus Xk adjusted for all the other covariates.”72

Most statisticians use the least squares regression technique because of its sim-
plicity and its desirable statistical properties. As a result, it also is used frequently 
in legal proceedings.

1. Specifying the regression model

Suppose an expert wants to analyze the salaries of women and men at a large pub-
lishing house to discover whether a difference in salaries between employees with 
similar years of work experience provides evidence of discrimination.73 To begin 
with the simplest case, Y, the salary in dollars per year, represents the dependent 
variable to be explained, and X1 represents the explanatory variable—the number 
of years of experience of the employee. The regression model would be written

	 Y = β0 + β1X1 + ε.	 (4)

In equation (4), b0 and b1 are the parameters to be estimated from the data, 
and e is the random error term. The parameter b0 is the average salary of all 
employees with no experience. The parameter b1 measures the average effect of 
an additional year of experience on the average salary of employees.

2. Regression line

Once the parameters in a regression equation, such as equation (3), have been esti-
mated, the fitted values for the dependent variable can be calculated. If we denote 
the estimated regression parameters, or regression coefficients, for the model in 
equation (3) by β0, β1, . . . βk, the fitted values for Y, denoted Ŷ, are given by

	 Ŷ  = β0 + β1X1 + β2X2 + . . . βkXk.	 (5)

Figure 5 illustrates this for the example involving a single explanatory variable. 
The data are shown as a scatter of points; salary is on the vertical axis, and years 
of experience is on the horizontal axis. The estimated regression line is drawn 
through the data points. It is given by

	 Ŷ  = $15,000 + $2000X1.	 (6)

72.  In econometrics, this is known as ��������������������������������the Frisch–Waugh–Lovell theorem.
73.  The regression results used in this example are based on data for 1715 men and women, 

which were used by the defense in a sex discrimination case against the New York Times that was 
settled in 1978. Professor Orley Ashenfelter, Department of Economics, Princeton University, pro-
vided the data.
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Figure 5. Goodness of fit.

Thus, the fitted value for the salary associated with an individual’s years of experi-
ence X1i is given by

	 Ŷ i = β0 + β1X1i (at Point B).	 (7)

The intercept of the straight line is the average value of the dependent variable when 
the explanatory variable or variables are equal to 0; the intercept β0 is shown on 
the vertical axis in Figure 5. Similarly, the slope of the line measures the (average) 
change in the dependent variable associated with a unit increase in an explanatory 
variable; the slope β1 also is shown. In equation (6), the intercept $15,000 indicates 
that employees with no experience earn $15,000 per year. The slope parameter 
implies that each year of experience adds $2000 to an “average” employee’s salary.

Now, suppose that the salary variable is related simply to the sex of the employee. 
The relevant indicator variable, often called a dummy variable, is X2, which is 
equal to 1 if the employee is male, and 0 if the employee is female. Suppose the 
regression of salary Y on X2 yields the following result: Y = $30,449 + $10,979X2. 
The coefficient $10,979 measures the difference between the average salary of 
men and the average salary of women.74

74.  To understand why, note that when X2 equals 0, the average salary for women is 
$30,449 + $10,979*0 = $30,449. Correspondingly, when X2 = 1, the average salary for men 
is $30,449 + $10,979*1 = $41,428. The difference, $41,428 – $30,449, is $10,979.



Reference Guide on Multiple Regression

339

a. Regression residuals

For each data point, the regression residual is the difference between the actual 
values and fitted values of the dependent variable. Suppose, for example, that we 
are studying an individual with 3 years of experience and a salary of $27,000. 
According to the regression line in Figure 5, the average salary of an individual 
with 3 years of experience is $21,000. Because the individual’s salary is $6000 
higher than the average salary, the residual (the individual’s salary minus the aver-
age salary) is $6000. In general, the residual e associated with a data point, such as 
Point A in Figure 5, is given by ei = Yi − Ŷ i.  Each data point in the figure has a 
residual, which is the error made by the least squares regression method for that 
individual.

b. Nonlinearities

Nonlinear models account for the possibility that the effect of an explanatory 
variable on the dependent variable may vary in magnitude as the level of the 
explanatory variable changes. One useful nonlinear model uses interactions among 
variables to produce this effect. For example, suppose that

	 S = β1 +β2SEX + β3EXP + β4(EXP)(SEX) + ε	 (8)

where S is annual salary, SEX is equal to 1 for women and 0 for men, EXP rep-
resents years of job experience, and e is a random error term. The coefficient b2 
measures the difference in average salary (across all experience levels) between 
men and women for employees with no experience. The coefficient b3 measures 
the effect of experience on salary for men (when SEX = 0), and the coefficient 
b4 measures the difference in the effect of experience on salary between men and 
women. It follows, for example, that the effect of 1 year of experience on salary 
for men is b3, whereas the comparable effect for women is b3 + b4.

75

C. Interpreting Regression Results
To explain how regression results are interpreted, we can expand the earlier exam-
ple associated with Figure 5 to consider the possibility of an additional explanatory 
variable—the square of the number of years of experience, X3. The X3 variable is 
designed to capture the fact that for most individuals, salaries increase with experi-
ence, but eventually salaries tend to level off. The estimated regression line using 
the third additional explanatory variable, as well as the first explanatory variable 
for years of experience (X1) and the dummy variable for sex (X2), is

75.  Estimating a regression in which there are interaction terms for all explanatory variables, 
as in equation (8), is essentially the same as estimating two separate regressions, one for men and one 
for women.
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	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3.	 (9)

The importance of including relevant explanatory variables in a regression 
model is illustrated by the change in the regression results after the X3 and X1 
variables are added. The coefficient on the variable X2 measures the difference 
in the salaries of men and women while controlling for the effect of experience. 
The differential of $1675 is substantially lower than the previously measured dif-
ferential of $10,979. Clearly, failure to control for job experience in this example 
leads to an overstatement of the difference in salaries between men and women.

Now consider the interpretation of the explanatory variables for experience, 
X1 and X3. The positive sign on the X1 coefficient shows that salary increases with 
experience. The negative sign on the X3 coefficient indicates that the rate of sal-
ary increase decreases with experience. To determine the combined effect of the 
variables X1 and X3, some simple calculations can be made. For example, consider 
how the average salary of women (X2 = 0) changes with the level of experience. 
As experience increases from 0 to 1 year, the average salary increases by $2251, 
from $14,085 to $16,336. However, women with 2 years of experience earn only 
$2179 more than women with 1 year of experience, and women with 1 year of 
experience earn only $2127 more than women with 2 years. Furthermore, women 
with 7 years of experience earn $28,582 per year, which is only $1855 more than 
the $26,727 earned by women with 6 years of experience.76 Figure 6 illustrates 
the results: The regression line shown is for women’s salaries; the corresponding 
line for men’s salaries would be parallel and $1675 higher.

D. Determining the Precision of the Regression Results
Least squares regression provides not only parameter estimates that indicate the 
direction and magnitude of the effect of a change in the explanatory variable on 
the dependent variable, but also an estimate of the reliability of the parameter 
estimates and a measure of the overall goodness of fit of the regression model. 
Each of these factors is considered in turn.

1. Standard errors of the coefficients and t-statistics 

Estimates of the true but unknown parameters of a regression model are numbers 
that depend on the particular sample of observations under study. If a different 
sample were used, a different estimate would be calculated.77 If the expert con-
tinued to collect more and more samples and generated additional estimates, as 
might happen when new data became available over time, the estimates of each 

76.  These numbers can be calculated by substituting different values of X1 and X3 in equation (9).
77.  The least squares formula that generates the estimates is called the least squares estimator, 

and its values vary from sample to sample.
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parameter would follow a probability distribution (i.e., the expert could determine 
the percentage or frequency of the time that each estimate occurs). This probabil-
ity distribution can be summarized by a mean and a measure of dispersion around 
the mean, a standard deviation, which usually is referred to as the standard error 
of the coefficient, or the standard error (SE).78

Suppose, for example, that an expert is interested in estimating the average 
price paid for a gallon of unleaded gasoline by consumers in a particular geo-
graphic area of the United States at a particular point in time. The mean price for 
a sample of 10 gas stations might be $1.25, while the mean for another sample 
might be $1.29, and the mean for a third, $1.21. On this basis, the expert also 
could calculate the overall mean price of gasoline to be $1.25 and the standard 
deviation to be $0.04.

Least squares regression generalizes this result, by calculating means whose 
values depend on one or more explanatory variables. The standard error of a 
regression coefficient tells the expert how much parameter estimates are likely 
to vary from sample to sample. The greater the variation in parameter estimates 
from sample to sample, the larger the standard error and consequently the less 
reliable the regression results. Small standard errors imply results that are likely to 

78.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section IV.A, 
in this manual.
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be similar from sample to sample, whereas results with large standard errors show 
more variability.

Under appropriate assumptions, the least squares estimators provide “best” 
determinations of the true underlying parameters.79 In fact, least squares has sev-
eral desirable properties. First, least squares estimators are unbiased. Intuitively, 
this means that if the regression were calculated repeatedly with different samples, 
the average of the many estimates obtained for each coefficient would be the true 
parameter. Second, least squares estimators are consistent; if the sample were very 
large, the estimates obtained would come close to the true parameters. Third, 
least squares is efficient, in that its estimators have the smallest variance among all 
(linear) unbiased estimators.

If the further assumption is made that the probability distribution of each of 
the error terms is known, statistical statements can be made about the precision 
of the coefficient estimates. For relatively large samples (often, thirty or more 
data points will be sufficient for regressions with a small number of explanatory 
variables), the probability that the estimate of a parameter lies within an interval 
of 2 standard errors around the true parameter is approximately .95, or 95%. A 
frequent, although not always appropriate, assumption in statistical work is that the 
error term follows a normal distribution, from which it follows that the estimated 
parameters are normally distributed. The normal distribution has the property 
that the area within 1.96 standard errors of the mean is equal to 95% of the total 
area. Note that the normality assumption is not necessary for least squares to be 
used, because most of the properties of least squares apply regardless of normality.

In general, for any parameter estimate b, the expert can construct an interval 
around b such that there is a 95% probability that the interval covers the true 
parameter. This 95% confidence interval80 is given by81

	 b ± 1.96 (SE of b).	 (10) 

The expert can test the hypothesis that a parameter is actually equal to 0 (often 
stated as testing the null hypothesis) by looking at its t-statistic, which is defined as

	

t
b

b
= ( )SE

. 	 (11)

79.  The necessary assumptions of the regression model include (a) the model is specified cor-
rectly, (b) errors associated with each observation are drawn randomly from the same probability 
distribution and are independent of each other, (c) errors associated with each observation are indepen-
dent of the corresponding observations for each of the explanatory variables in the model, and (d) no 
explanatory variable is correlated perfectly with a combination of other variables.

80.  Confidence intervals are used commonly in statistical analyses because the expert can never 
be certain that a parameter estimate is equal to the true population parameter.

81.  If the number of data points in the sample is small, the standard error must be multiplied 
by a number larger than 1.96.
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If the t-statistic is less than 1.96 in magnitude, the 95% confidence interval around 
b must include 0.82 Because this means that the expert cannot reject the hypothesis 
that b equals 0, the estimate, whatever it may be, is said to be not statistically 
significant. Conversely, if the t-statistic is greater than 1.96 in absolute value, the 
expert concludes that the true value of b is unlikely to be 0 (intuitively, b is “too 
far” from 0 to be consistent with the true value of b being 0). In this case, the 
expert rejects the hypothesis that b equals 0 and calls the estimate statistically sig-
nificant. If the null hypothesis b equals 0 is true, using a 95% confidence level will 
cause the expert to falsely reject the null hypothesis 5% of the time. Consequently, 
results often are said to be significant at the 5% level.83

As an example, consider a more complete set of regression results associated 
with the salary regression described in equation (9):

	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3	
			   (1577)	 (140)	 (1435)	 (3.4)	
	 t 	 = 	 8.9	 16.5	 1.2	 −10.8.	 (12)

The standard error of each estimated parameter is given in parentheses directly 
below the parameter, and the corresponding t-statistics appear below the standard 
error values.

Consider the coefficient on the dummy variable X2. It indicates that $1675 
is the best estimate of the mean salary difference between men and women. 
However, the standard error of $1435 is large in relation to its coefficient $1675. 
Because the standard error is relatively large, the range of possible values for 
measuring the true salary difference, the true parameter, is great. In fact, a 95% 
confidence interval is given by

	 $1675 ± $1435 ∙ 1.96 = $1675 ± $2813.	 (13)

In other words, the expert can have 95% confidence that the true value of the 
coefficient lies between –$1138 and $4488. Because this range includes 0, the 
effect of sex on salary is said to be insignificantly different from 0 at the 5% level. 
The t value of 1.2 is equal to $1675 divided by $1435. Because this t-statistic is 
less than 1.96 in magnitude (a condition equivalent to the inclusion of a 0 in the 
above confidence interval), the sex variable again is said to be an insignificant 
determinant of salary at the 5% level of significance.

82.  The t-statistic applies to any sample size. As the sample gets large, the underlying distribution, 
which is the source of the t-statistic (Student’s t-distribution), approximates the normal distribution.

83.  A t-statistic of 2.57 in magnitude or greater is associated with a 99% confidence level, or a 
1% level of significance, that includes a band of 2.57 standard deviations on either side of the estimated 
coefficient.
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Note also that experience is a highly significant determinant of salary, because 
both the X1 and the X3 variables have t-statistics substantially greater than 1.96 in 
magnitude. More experience has a significant positive effect on salary, but the size 
of this effect diminishes significantly with experience.

2. Goodness of fit

Reported regression results usually contain not only the point estimates of the 
parameters and their standard errors or t-statistics, but also other information that 
tells how closely the regression line fits the data. One statistic, the standard error of 
the regression (SER), is an estimate of the overall size of the regression residuals.84 
An SER of 0 would occur only when all data points lie exactly on the regression 
line—an extremely unlikely possibility. Other things being equal, the larger the 
SER, the poorer the fit of the data to the model.

For a normally distributed error term, the expert would expect approximately 
95% of the data points to lie within 2 SERs of the estimated regression line, as 
shown in Figure 7 (in Figure 7, the SER is approximately $5000).

84.  More specifically, it is a measure of the standard deviation of the regression error ε. It some-
times is called the root mean squared error of the regression line.
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R-squared (R2) is a statistic that measures the percentage of variation in the 
dependent variable that is accounted for by all the explanatory variables.85 Thus, 
R2

 provides a measure of the overall goodness of fit of the multiple regression 
equation. Its value ranges from 0 to 1. An R2

 of 0 means that the explanatory 
variables explain none of the variation of the dependent variable; an R2

 of 1 means 
that the explanatory variables explain all of the variation. The R2

 associated with 
equation (12) is .56. This implies that the three explanatory variables explain 56% 
of the variation in salaries.

What level of R2, if any, should lead to a conclusion that the model is satis-
factory? Unfortunately, there is no clear-cut answer to this question, because the 
magnitude of R2 depends on the characteristics of the data being studied and, in 
particular, whether the data vary over time or over individuals. Typically, an R2 
is low in cross-sectional studies in which differences in individual behavior are 
explained. It is likely that these individual differences are caused by many factors 
that cannot be measured. As a result, the expert cannot hope to explain most of 
the variation. In time-series studies, in contrast, the expert is explaining the move-
ment of aggregates over time. Because most aggregate time series have substantial 
growth, or trend, in common, it will not be difficult to “explain” one time series 
using another time series, simply because both are moving together. It follows as 
a corollary that a high R2

 does not by itself mean that the variables included in 
the model are the appropriate ones.

As a general rule, courts should be reluctant to rely solely on a statistic such as R2
 

to choose one model over another. Alternative procedures and tests are available.86

3. Sensitivity of least squares regression results

The least squares regression line can be sensitive to extreme data points. This 
sensitivity can be seen most easily in Figure 8. Assume initially that there are only 
three data points, A, B, and C, relating information about X1 to the variable Y. 
The least squares line describing the best-fitting relationship between Points A, B, 
and C is represented by Line 1. Point D is called an outlier because it lies far from 
the regression line that fits the remaining points. When a new, best-fitting least 
squares line is reestimated to include Point D, Line 2 is obtained. Figure 8 shows 
that the outlier Point D is an influential data point, because it has a dominant effect 
on the slope and intercept of the least squares line. Because least squares attempts 
to minimize the sum of squared deviations, the sensitivity of the line to individual 
points sometimes can be substantial.87

85.  The variation is the square of the difference between each Y value and the average Y value, 
summed over all the Y values.

86.  These include F-tests and specification error tests. See Pindyck & Rubinfeld, supra note 23, 
at 88–95, 128–36, 194–98.

87.  This sensitivity is not always undesirable. In some instances it may be much more important 
to predict Point D when a big change occurs than to measure the effects of small changes accurately.
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What makes the influential data problem even more difficult is that the effect 
of an outlier may not be seen readily if deviations are measured from the final 
regression line. The reason is that the influence of Point D on Line 2 is so sub-
stantial that its deviation from the regression line is not necessarily larger than the 
deviation of any of the remaining points from the regression line.88 Although they 
are not as popular as least squares, alternative estimation techniques that are less 
sensitive to outliers, such as robust estimation, are available.

E. Reading Multiple Regression Computer Output
Statistical computer packages that report multiple regression analyses vary to some 
extent in the information they provide and the form that the information takes. 
Table 1 contains a sample of the basic computer output that is associated with 
equation (9).

88.  The importance of an outlier also depends on its location in the dataset. Outliers associated 
with relatively extreme values of explanatory variables are likely to be especially influential. See, e.g., 
Fisher v. Vassar College, 70 F.3d 1420, 1436 (2d Cir. 1995) (court required to include assessment of 
“service in academic community,” because concept was too amorphous and not a significant factor in 
tenure review), rev’d on other grounds, 114 F.3d 1332 (2d Cir. 1997) (en banc).
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Table 1. Regression Output

Dependent variable: Y SSE 62346266124 F-test 174.71
DFE 561 Prob > F 0.0001
MSE 111134164 R2 0.556

Variable DF
Parameter
Estimate

Standard  
Error t-Statistic Prob >|t|

Intercept 1 14,084.89 1577.484 8.9287 .0001

X1 1 2323.17 140.70 16.5115 .0001

X2 1 1675.11 1435.422 1.1670 .2437

X3 1 −36.71 3.41 −10.7573 .0001

Note: SSE = sum of squared errors; DFE = degrees of freedom associated with the error term; MSE 
= mean squared error; DF = degrees of freedom; Prob = probability.

In the lower portion of Table 1, note that the parameter estimates, the standard 
errors, and the t-statistics match the values given in equation (12).89 The variable 
“Intercept” refers to the constant term b0 in the regression. The column “DF” 
represents degrees of freedom. The “1” signifies that when the computer calculates 
the parameter estimates, each variable that is added to the linear regression adds 
an additional constraint that must be satisfied. The column labeled “Prob > |t|” 
lists the two-tailed p-values associated with each estimated parameter; the p-value 
measures the observed significance level—the probability of getting a test statistic as 
extreme or more extreme than the observed number if the model parameter is in 
fact 0. The very low p-values on the variables X1 and X3 imply that each variable 
is statistically significant at less than the 1% level—both highly significant results. 
In contrast, the X2 coefficient is only significant at the 24% level, implying that 
it is insignificant at the traditional 5% level. Thus, the expert cannot reject with 
confidence the null hypothesis that salaries do not differ by sex after the expert has 
accounted for the effect of experience.

The top portion of Table 1 provides data that relate to the goodness of fit 
of the regression equation. The sum of squared errors (SSE) measures the sum 
of the squares of the regression residuals—the sum that is minimized by the least 
squares procedure. The degrees of freedom associated with the error term (DFE) 
are given by the number of observations minus the number of parameters that 
were estimated. The mean squared error (MSE) measures the variance of the 
error term (the square of the standard error of the regression). MSE is equal to 
SSE divided by DFE.

89.  Computer programs give results to more decimal places than are meaningful. This added 
detail should not be seen as evidence that the regression results are exact.
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The R2 of 0.556 indicates that 55.6% of the variation in salaries is explained 
by the regression variables, X1, X2, and X3. Finally, the F-test is a test of the null 
hypothesis that all regression coefficients (except the intercept) are jointly equal 
to 0—that there is no linear association between the dependent variable and any of the 
explanatory variables. This is equivalent to the null hypothesis that R2 is equal to 0. In 
this case, the F-ratio of 174.71 is sufficiently high that the expert can reject the null 
hypothesis with a very high degree of confidence (i.e., with a 1% level of significance).

F. Forecasting
In general, a forecast is a prediction made about the values of the dependent vari-
able using information about the explanatory variables. Often, ex ante forecasts 
are performed; in this situation, values of the dependent variable are predicted 
beyond the sample (e.g., beyond the time period in which the model has been 
estimated). However, ex post forecasts are frequently used in damage analyses.90 
An ex post forecast has a forecast period such that all values of the dependent and 
explanatory variables are known; ex post forecasts can be checked against existing 
data and provide a direct means of evaluation.

For example, to calculate the forecast for the salary regression discussed above, 
the expert uses the estimated salary equation

	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3.	 (14)

To predict the salary of a man with 2 years’ experience, the expert calculates

	 Ŷ (2) = $14,085 + ($2323 ∙ 2) + $1675 − ($36 ∙ 2) = $20,262.	 (15)

The degree of accuracy of both ex ante and ex post forecasts can be calculated 
provided that the model specification is correct and the errors are normally dis-
tributed and independent. The statistic is known as the standard error of forecast 
(SEF). The SEF measures the standard deviation of the forecast error that is made 
within a sample in which the explanatory variables are known with certainty.91

 The 

90.  Frequently, in cases involving damages, the question arises, what the world would have been 
like had a certain event not taken place. For example, in a price-fixing antitrust case, the expert can 
ask what the price of a product would have been had a certain event associated with the price-fixing 
agreement not occurred. If prices would have been lower, the evidence suggests impact. If the expert 
can predict how much lower they would have been, the data can help the expert develop a numerical 
estimate of the amount of damages.

91.  There are actually two sources of error implicit in the SEF. The first source arises because 
the estimated parameters of the regression model may not be exactly equal to the true regression 
parameters. The second source is the error term itself; when forecasting, the expert typically sets the 
error equal to 0 when a turn of events not taken into account in the regression model may make it 
appropriate to make the error positive or negative.
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SEF can be used to determine how accurate a given forecast is. In equation (15), 
the SEF associated with the forecast of $20,262 is approximately $5000. If a large 
sample size is used, the probability is roughly 95% that the predicted salary will be 
within 1.96 standard errors of the forecasted value. In this case, the appropriate 
95% interval for the prediction is $10,822 to $30,422. Because the estimated model 
does not explain salaries effectively, the SEF is large, as is the 95% interval. A more 
complete model with additional explanatory variables would result in a lower SEF 
and a smaller 95% interval for the prediction.

A danger exists when using the SEF, which applies to the standard errors of 
the estimated coefficients as well. The SEF is calculated on the assumption that the 
model includes the correct set of explanatory variables and the correct functional 
form. If the choice of variables or the functional form is wrong, the estimated fore-
cast error may be misleading. In some instances, it may be smaller, perhaps substan-
tially smaller, than the true SEF; in other instances, it may be larger, for example, if 
the wrong variables happen to capture the effects of the correct variables.

The difference between the SEF and the SER is shown in Figure 9. The SER 
measures deviations within the sample. The SEF is more general, because it cal-
culates deviations within or without the sample period. In general, the difference 
between the SEF and the SER increases as the values of the explanatory variables 
increase in distance from the mean values. Figure 9 shows the 95% prediction 
interval created by the measurement of two SEFs about the regression line.
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Figure 9. Standard error of forecast.
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G. A Hypothetical Example
Jane Thompson filed suit in federal court alleging that officials in the police 
department discriminated against her and a class of other female police officers in 
violation of Title VII of the Civil Rights Act of 1964, as amended. On behalf of 
the class, Ms. Thompson alleged that she was paid less than male police officers 
with equivalent skills and experience. Both plaintiff and defendant used expert 
economists with econometric expertise to present statistical evidence to the court 
in support of their positions.

Plaintiff’s expert pointed out that the mean salary of the 40 female officers was 
$30,604, whereas the mean salary of the 60 male officers was $43,077. To show 
that this difference was statistically significant, the expert put forward a regression 
of salary (SALARY) on a constant term and a dummy indicator variable (FEM) 
equal to 1 for each female and 0 for each male. The results were as follows:

SALARY = $43,077 −$12,373*FEM 
Standard Error	 ($1528)	 ($2416)
p-value	 <.01	 <.01
R2 = .22

The −$12,373 coefficient on the FEM variable measures the mean difference 
between male and female salaries. Because the standard error is approximately one-
fifth of the value of the coefficient, this difference is statistically significant at the 5% 
(and indeed at the 1%) level. If this is an appropriate regression model (in terms of its 
implicit characterization of salary determination), one can conclude that it is highly 
unlikely that the difference in salaries between men and women is due to chance.

The defendant’s expert testified that the regression model put forward was the 
wrong model because it failed to account for the fact that males (on average) had 
substantially more experience than females. The relatively low R2 was an indica-
tion that there was substantial unexplained variation in the salaries of male and 
female officers. An examination of data relating to years spent on the job showed 
that the average male experience was 8.2 years, whereas the average for females 
was only 3.5 years. The defense expert then presented a regression analysis that 
added an additional explanatory variable (i.e., a covariate), the years of experience 
of each police officer (EXP). The new regression results were as follows:

SALARY = $28,049 – $3860*FEM + $1833*EXP
Standard Error	  (2513)	 ($2347)	 ($265)
p-value	  <.01	  <.11	 <.01
R2 = .47

Experience is itself a statistically significant explanatory variable, with a 
p-value of less than .01. Moreover, the difference between male and female 



Reference Guide on Multiple Regression

351

salaries, holding experience constant, is only $3860, and this difference is not sta-
tistically significant at the 5% level. The defense expert was able to testify on this 
basis that the court could not rule out alternative explanations for the difference 
in salaries other than the plaintiff’s claim of discrimination.

The debate did not end here. On rebuttal, the plaintiff’s expert made three 
distinct points. First, whether $3860 was statistically significant or not, it was prac-
tically significant, representing a salary difference of more than 10% of the mean 
female officers’ salaries. Second, although the result was not statistically significant at 
the 5% level, it was significant at the 11% level. If the regression model were valid, 
there would be approximately an 11% probability that one would err by concluding 
that the mean salary difference between men and women was a result of chance.

Third, and most importantly, the expert testified that the regression model 
was not correctly specified. Further analysis by the expert showed that the value of 
an additional year of experience was $2333 for males on average, but only $1521 
for females. Based on supporting testimonial experience, the expert testified that 
one could not rule out the possibility that the mechanism by which the police 
department discriminated against females was by rewarding males more for their 
experience than females. The expert made this point clear by running an addi-
tional regression in which a further covariate was added to the model. The new 
variable was an interaction variable, INT, measured as the product of the FEM 
and EXP variables. The regression results were as follows:

SALARY = $35,122 − $5250*FEM + $2333*EXP − $812*FEM*EXP
St. Error	 ($2825)	 ($347)	 ($265)	  ($185)
p-value	 <.01	 <.11	 <.01 	 <.04
R2 = .65

The plaintiff’s expert noted that for all males in the sample, FEM = 0, in which 
case the regression results are given by the equation

SALARY = $35,122 + $2333*EXP

However, for females, FEM = 1, in which the corresponding equation is

SALARY = $29,872 + $1521*EXP

It appears, therefore, that females are discriminated against not only when hired 
(i.e., when EXP = 0), but also in the reward they get as they accumulate more 
and more experience.

The debate between the experts continued, focusing less on the statistical inter-
pretation of any one particular regression model, but more on the model choice 
itself, and not simply on statistical significance, but also with regard to practical 
significance.
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Glossary
The following terms and definitions are adapted from a variety of sources, includ-
ing A Dictionary of Epidemiology (John M. Last et al., eds., 4th ed. 2000) and 
Robert S. Pindyck & Daniel L. Rubinfeld, Econometric Models and Economic 
Forecasts (4th ed. 1998).

alternative hypothesis. See hypothesis test.

association. The degree of statistical dependence between two or more events or 
variables. Events are said to be associated when they occur more frequently 
together than one would expect by chance.

bias. Any effect at any stage of investigation or inference tending to produce 
results that depart systematically from the true values (i.e., the results are 
either too high or too low). A biased estimator of a parameter differs on 
average from the true parameter.

coefficient. An estimated regression parameter.

confidence interval. An interval that contains a true regression parameter with 
a given degree of confidence.

consistent estimator. An estimator that tends to become more and more accu-
rate as the sample size grows.

correlation. A statistical means of measuring the linear association between vari-
ables. Two variables are correlated positively if, on average, they move in the 
same direction; two variables are correlated negatively if, on average, they 
move in opposite directions.

covariate. A variable that is possibly predictive of an outcome under study; an 
explanatory variable.

cross-sectional analysis. A type of multiple regression analysis in which each 
data point is associated with a different unit of observation (e.g., an individual 
or a firm) measured at a particular point in time.

degrees of freedom (DF). The number of observations in a sample minus the 
number of estimated parameters in a regression model. A useful statistic in 
hypothesis testing.

dependent variable. The variable to be explained or predicted in a multiple 
regression model.

dummy variable. A variable that takes on only two values, usually 0 and 1, with 
one value indicating the presence of a characteristic, attribute, or effect (1), 
and the other value indicating its absence (0).

efficient estimator. An estimator of a parameter that produces the greatest pre-
cision possible.

error term. A variable in a multiple regression model that represents the cumula-
tive effect of a number of sources of modeling error.



Reference Guide on Multiple Regression

353

estimate. The calculated value of a parameter based on the use of a particular 
sample.

estimator. The sample statistic that estimates the value of a population parameter 
(e.g., a regression parameter); its values vary from sample to sample.

ex ante forecast. A prediction about the values of the dependent variable that go 
beyond the sample; consequently, the forecast must be based on predictions 
for the values of the explanatory variables in the regression model.

explanatory variable. A variable that is associated with changes in a dependent 
variable.

ex post forecast. A prediction about the values of the dependent variable made 
during a period in which all values of the explanatory and dependent variables 
are known. Ex post forecasts provide a useful means of evaluating the fit of 
a regression model.

F-test. A statistical test (based on an F-ratio) of the null hypothesis that a group of 
explanatory variables are jointly equal to 0. When applied to all the explana-
tory variables in a multiple regression model, the F-test becomes a test of the 
null hypothesis that R2

 equals 0.

feedback. When changes in an explanatory variable affect the values of the 
dependent variable, and changes in the dependent variable also affect the 
explanatory variable. When both effects occur at the same time, the two 
variables are described as being determined simultaneously.

fitted value. The estimated value for the dependent variable; in a linear regres-
sion, this value is calculated as the intercept plus a weighted average of the 
values of the explanatory variables, with the estimated parameters used as 
weights.

heteroscedasticity. When the error associated with a multiple regression model 
has a nonconstant variance; that is, the error values associated with some 
observations are typically high, while the values associated with other obser-
vations are typically low.

hypothesis test. A statement about the parameters in a multiple regression model. 
The null hypothesis may assert that certain parameters have specified values 
or ranges; the alternative hypothesis would specify other values or ranges.

independence. When two variables are not correlated with each other (in the 
population).

independent variable. An explanatory variable that affects the dependent vari-
able but that is not affected by the dependent variable.

influential data point. A data point whose deletion from a regression sample 
causes one or more estimated regression parameters to change substantially.

interaction variable. The product of two explanatory variables in a regression 
model. Used in a particular form of nonlinear model.
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intercept. The value of the dependent variable when each of the explanatory 
variables takes on the value of 0 in a regression equation.

least squares. A common method for estimating regression parameters. Least 
squares minimizes the sum of the squared differences between the actual 
values of the dependent variable and the values predicted by the regression 
equation.

linear regression model. A regression model in which the effect of a change in 
each of the explanatory variables on the dependent variable is the same, no 
matter what the values of those explanatory variables.

mean (sample). An average of the outcomes associated with a probability dis-
tribution, where the outcomes are weighted by the probability that each will 
occur.

mean squared error (MSE). The estimated variance of the regression error, 
calculated as the average of the sum of the squares of the regression residuals.

model. A representation of an actual situation.

multicollinearity. When two or more variables are highly correlated in a mul-
tiple regression analysis. Substantial multicollinearity can cause regression 
parameters to be estimated imprecisely, as reflected in relatively high standard 
errors.

multiple regression analysis. A statistical tool for understanding the relationship 
between two or more variables.

nonlinear regression model. A model having the property that changes in 
explanatory variables will have differential effects on the dependent variable 
as the values of the explanatory variables change.

normal distribution. A bell-shaped probability distribution having the property 
that about 95% of the distribution lies within 2 standard deviations of the 
mean.

null hypothesis. In regression analysis the null hypothesis states that the results 
observed in a study with respect to a particular variable are no different from 
what might have occurred by chance, independent of the effect of that vari-
able. See hypothesis test.

one-tailed test. A hypothesis test in which the alternative to the null hypothesis 
that a parameter is equal to 0 is for the parameter to be either positive or 
negative, but not both.

outlier. A data point that is more than some appropriate distance from a regres-
sion line that is estimated using all the other data points in the sample.

p-value. The significance level in a statistical test; the probability of getting a test 
statistic as extreme or more extreme than the observed value. The larger the 
p-value, the more likely that the null hypothesis is valid.

parameter. A numerical characteristic of a population or a model.
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perfect collinearity. When two or more explanatory variables are correlated 
perfectly.

population. All the units of interest to the researcher; also, universe.

practical significance. Substantive importance. Statistical significance does not 
ensure practical significance, because, with large samples, small differences 
can be statistically significant.

probability distribution. The process that generates the values of a random vari-
able. A probability distribution lists all possible outcomes and the probability 
that each will occur.

probability sampling. A process by which a sample of a population is chosen 
so that each unit of observation has a known probability of being selected.

quasi-experiment (or natural experiment). A naturally occurring instance 
of observable phenomena that yield data that approximate a controlled 
experiment. 

R-squared (R2). A statistic that measures the percentage of the variation in the 
dependent variable that is accounted for by all of the explanatory variables in 
a regression model. R-squared is the most commonly used measure of good-
ness of fit of a regression model. 

random error term. A term in a regression model that reflects random error 
(sampling error) that is the result of chance. As a consequence, the result 
obtained in the sample differs from the result that would be obtained if the 
entire population were studied.

regression coefficient. Also, regression parameter. The estimate of a population 
parameter obtained from a regression equation that is based on a particular 
sample.

regression residual. The difference between the actual value of a dependent 
variable and the value predicted by the regression equation.

robust estimation. An alternative to least squares estimation that is less sensitive 
to outliers.

robustness. A statistic or procedure that does not change much when data or 
assumptions are slightly modified is robust.

sample. A selection of data chosen for a study; a subset of a population.

sampling error. A measure of the difference between the sample estimate of a 
parameter and the population parameter.

scatterplot. A graph showing the relationship between two variables in a study; 
each dot represents one subject. One variable is plotted along the horizontal 
axis; the other variable is plotted along the vertical axis.

serial correlation. The correlation of the values of regression errors over time.
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slope. The change in the dependent variable associated with a one-unit change 
in an explanatory variable.

spurious correlation. When two variables are correlated, but one is not the 
cause of the other.

standard deviation. The square root of the variance of a random variable. The 
variance is a measure of the spread of a probability distribution about its mean; 
it is calculated as a weighted average of the squares of the deviations of the 
outcomes of a random variable from its mean.

standard error of forecast (SEF). An estimate of the standard deviation of the 
forecast error; it is based on forecasts made within a sample in which the values 
of the explanatory variables are known with certainty.

standard error of the coefficient; standard error (SE). A measure of the 
variation of a parameter estimate or coefficient about the true parameter. The 
standard error is a standard deviation that is calculated from the probability 
distribution of estimated parameters.

standard error of the regression (SER). An estimate of the standard deviation 
of the regression error; it is calculated as the square root of the average of the 
squares of the residuals associated with a particular multiple regression analysis.

statistical significance. A test used to evaluate the degree of association between 
a dependent variable and one or more explanatory variables. If the calculated 
p-value is smaller than 5%, the result is said to be statistically significant (at 
the 5% level). If p is greater than 5%, the result is statistically insignificant 
(at the 5% level).

t-statistic. A test statistic that describes how far an estimate of a parameter is from 
its hypothesized value (i.e., given a null hypothesis). If a t-statistic is suffi-
ciently large (in absolute magnitude), an expert can reject the null hypothesis.

t-test. A test of the null hypothesis that a regression parameter takes on a particu-
lar value, usually 0. The test is based on the t-statistic.

time-series analysis. A type of multiple regression analysis in which each data 
point is associated with a particular unit of observation (e.g., an individual or 
a firm) measured at different points in time.

two-tailed test. A hypothesis test in which the alternative to the null hypothesis 
that a parameter is equal to 0 is for the parameter to be either positive or 
negative, or both.

variable. Any attribute, phenomenon, condition, or event that can have two or 
more values.

variable of interest. The explanatory variable that is the focal point of a par-
ticular study or legal issue.
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